COMPUTER
ARCHITECTURE GROUP

Exploring the Performance Implications of
Memory Safety
Primitives in Many-core Processors Executing
Multi-threaded Workloads

Masab Ahmad, Syed Kamran Haider, Farrukh Hijaz,
Marten van Dijk, Omer Khan

University of Connecticut

Agenda

Motivation
Characterization Methodology
Characterization Results

Insights and Possible Improvements

HHE“NN COMPUTER
ARCHITECTURE GROUP

Agenda

Motivation
Characterization Methodology
Characterization Results

Insights and Possible Improvements

HHE“NN COMPUTER
ARCHITECTURE GROUP

Security Vulnerabilities in
Processors

. . Vulnerable Applications
Compromised OS (Applications J . Buffer Overflow Attacks

Privacy Leakage Code Injection

s)

-

CPU |
Other Devices
Data Tampering

Malicious I/Os v
DosS Attacks Side Channels

A C——
| wo DRAM <->

ﬂl]NN
ARCHITECTURE GROUP

Security Vulnerabilities in
Processors

Privacy Leakage Code Injection

S H G

@ Performance 1

. . Vulnerable Applications
Compromised OS (Applications J . Buffer Overflow Attacks

Other Devices
Data Tampering

Malicious 1/Os EEEEEN
DoS Attacks

\-Q A I/O DRAM ‘4—»

[U]““NN COMPUTER
ARCHITECTURE GROUP

Key Questions

* What are the performance implications of these
security schemes?

* How do they affect performance in the context of
multicores?

* |[EEE Computer Vision 2022 predicts that Multicores as a key
enabling technology by 2022

* To get started, we look at Buffer Overflow Protection
Schemes

 How do they affect tradeoffs in Multicores?

[:[INN
ARCHITECTURE GROUP

A Primer on Buffer Overflow Attacks

e The stack return
address is located
after the program
contents

a+n | Return Address a+n a+2
: Overflow
Other Variables Attack a+2

e An attacker enters a
modified string, 43
overwrites the return
address

overwrites
Return

+
Address a+3

a+2 a+2

a+l a+l

* The return address
now points to the Attacker Attacker takes
malicious code Comes In Control

Hﬂn“NN COMPUTER
ARCHITECTURE GROUP

Security Solutions and Prior Works

* Dynamic Information Flow Tracking (DIFT) :
* Flags and Tags all data from 1/O
* Raises exceptions of tagged data propagates into program control flow

* High False positive rates, Zero false negatives (Hence not used in
applications)

e Context based Checking :

* Creates a “context”, an identifier for each variable/data structure in the
program

e Checks on each variable read/write

* Large data structure required, 1 element for each array element. Pointer
aliasing problems (Hence also not used in applications)

* Bounds Checking :

* Creates a base and bounds Metadata data structure for a program
* Reads and writes are checked and updated as meta data
* Close to Zero False positives and negatives (Used a lot in Safe languages etc)

[:[INN
ARCHITECTURE GROUP

Security Solutions and Prior Works

* Dynamic Information Flow Tracking (DIFT) :
* Flags and Tags all data from 1/O
* Raises exceptions of tagged data propagates into program control flow

* High False positive rates, Zero false negatives (Hence not used in
applications)

e Context based Checking :

* Creates a “context”, an identifier for each variable/data structure in the
program

e Checks on each variable read/write

* Large data structure required, 1 element for each array element. Pointer
aliasing problems (Hence also not used in applications)

* Bounds Checking :
* Creates a base and bounds Metadata data structure for a program

* Reads and writes are checked and updated as meta data
* Close to Zero False positives and negatives (Used a lot in Safe languages etc)

M““NN COMPUTER
ARCHITECTURE GROUP

Bound Checking Schemes

 Hardware based Schemes:
e CHERI Bound
* HardBound
 Watchdoglite

Base

e Software based Schemes:

Jsoas

e Cyclone

» SafeCode

* Ccured

* And many others

» Safe Languages such as Python and Java

M““NN COMPUTER
ARCHITECTURE GROUP

a+n

a+3
a+2

a+l

Return Address

Other Variables

) —I
I Bounds |Compute

I Check 1 Pipeline

L———*

y
R~
I Bounds |
I Metadata |

L———L————

r---rf----
I Bounds |
I Metadatal

L———‘————

Caches 1

DRAM 1

Overflow
Attack
cannot write
beyond the
Bound

Bounds
Checks

Extra
Memory
Accesses

Performance Implications in

Multicores

* Previous works
have not analyzed
memory safety
schemes in the
context of
multicores

 All prior works use
sequential
benchmarks such
as SPEC

ﬂ[lNN
ARCHITECTURE GROUP

Core

r——-~"r—=—=—~
I Bounds jCompute

I Check 1 Pipeline

L——-“————

Increased Synchronization Bottlenecks
Coherency as more time spent in critical
code sections

Bottlenecks

| r——=|
| I Bounds |
| | Metadatal
|

L———J

Cache Pollution

and Interference

Compute Stalls
for Bound

Checks
|

Shared
Cache

Core

r=-—=r=—-—=-—-= ‘I
I Bounds jCompute

I Check 1 Pipeline

L———"‘———

Reduced
Scalability

r= ==
I Bounds |
| Metadatal

L———J

Extra Memory
Accesses

r=="r—-=—=~

I Bounds |
| Metadata|

|
DRAM |
|

L———*————

Performance Implications

in Multicores : Critical Code

e Critical code sections such as
atomically locked program
functions are most affected.

* Due to bounds checking
stalls, a thread keeps a locked
section for a longer time,
depriving other threads from
exploiting scalability.

COMPUTER
ARCHITECTURE GROUP

Code Without SoftBound

1. inta=1;

2. pthread_mutex_lock(&lock);
3. do_parallel_work();

4. pthread_mutex_unlock(&Ilock);

5. return O;

Code With SoftBound

1. inta=1;

2. pthread_mutex_lock(&lock);
3. do_parallel_work();

4. Get Security Metadata();

5. SoftBound Checks ();

6. pthread_mutex_unlock(&lock);

/. return O;

Agenda

Motivation
Characterization Methodology
Characterization Results

Insights and Possible Improvements

M““NN COMPUTER
ARCHITECTURE GROUP

System Model

Multicore Processor

‘Il.....

p .
O
fd
L
-
£
» |Gl
Q
x
i
Q.
(O
p
O

y *
=
SoftBound
< o o
g Application Data Metadata

COMPUTER
ARCHITECTURE GROUP

[SoftBound]

Executables
compiled with
SoftBound

System Parameters

* The Graphite Simulator is used to
analyze Parallel Benchmarks

256 Cores @ 1 GHz

Results for both in-order and
Out-of-Order cores

L1-I Cache : 32 KB per core
L1-D Cache : 32 KB per core
L2 Cache : 256 KB per core
00O ROB Buffer Size: 168

* An 8 Core Intel machine used as well
(Trends similar as Graphite results)
(Results in Paper)

* POSIX Threading Model is used

Evaluation Includes results for 1-256 Threads

COMPUTER

““NN ARCHITECTURE GROUP

Architectural Parameter

Value

Number of Cores

256 @ 1 GHz

In-Order Core Setup

Compute Pipeline per Core

| Single-Issue Core

Out-of-Order Core Setup

Compute Pipeline per Core

Single-Issue Core
Out-of-Order Memory

Reorder Buffer Size 168

Load Queue Size 64

Store Queue Size 48
Memory Subsystem

L1-I Cache per core
L1-D Cache per core
L2 Cache per core

Cache Line Size
Directory Protocol

Num. of Memory Controllers
DRAM Bandwidth
DRAM Latency

32 KB, 4-way Assoc., | cycle

32 KB, 4-way Assoc., 1 cycle
256 KB, 8-way Assoc., 8 cycle
Inclusive, NUCA

64 bytes

Invalidation-based MESI
ACKWisey [[11]] limited directory
8

5 GBps per Controller

100 ns

Electrical 2-D Mesh with XY Routing

Hop Latency
Contention Model

Flit Width

2 cycles (1-router, 1-link)
Only link contention
(Infinite input buffers)

64 bits

Evaluated Benchmarks

Prefix Scan — 16M elements

* Each Thread gets a chunk to scan, then the Master Thread reduces the scans of other threads to
get the final solution

* Barriers used to do explicit Synchronization

Matrix Multiply — 1K x 1K

* Each Thread Tiles a chunk of the matrix, and multiplies to get the final matrix
* Barriers used to do explicit Synchronization

Breadth First Search (BFS) — 1M vertices, 16MM edges
* Each Thread gets a chunk of the graph to search on

* Atomic locks used on all graph vertices to ensure that no race conditions occur in shared vertices

Dijkstra — 16K vertices, 134M edges

* Checking neighboring nodes for shortest path distances parallelized among threads
* Explicit Barriers to progress each node check

[:l]NN
ARCHITECTURE GROUP

Agenda

Motivation
Characterization Methodology
Characterization Results

Insights and Possible Improvements

HHE“NN COMPUTER
ARCHITECTURE GROUP

Benchmark Characterization : Prefix
Scan

 Shows Weak

_ B Compute L1Cache-L2Home
Scaling

B L2Home-OffChip ™ Synchronization

=
N

=
1

Ut
00

16 32 64 9 128 160 192 224 256

Thread Count

Normalized Completion Time
&
[
|

EI]NN
ARCHITECTURE GROUP

Benchmark Characterization : Prefix
Scan

* Shows Weak L1Cache-L2Home

Scalin
5 B L2Home-OffChip ™ Synchronization

) 1,2
£
= 1
c
= |
‘5 0,8
9
Q R
€ 0,6 I
S T
< 04 I I i
]
= 0,2 I i i il
e
g 0 l . s - - _
2 1 2 4 8 16 32 64 96 128 160 192 224 256

Thread Count

HﬂﬂﬂNN
ARCHITECTURE GROUP

Benchmark Characterization : Prefix

 Shows Weak

B Compute L1Cache-L2Home

Scalin
5 B L2Home-OffChip ™ Synchronization

) 1,2
£
= 1
c
= |
‘5 0,8
9
Q R
€ 0,6 I
S T
< 04 I I i
]
= 0,2 I i i illl
e
g 0 l . s - - _
2 1 2 4 8 16 32 64 96 128 160 192 224 256

Thread Count

MEHNN
ARCHITECTURE GROUP

Benchmark Characterization : Prefix
Scan

 Shows Weak

. B Compute L1Cache-L2Home
Scaling o
B Synchronization

-
N

=

o
00

o
o

o
~

o
N

8 16 32 64 9 128 160 192 224 256

Thread Count

Normalized Completion Time
o

MEHNN
ARCHITECTURE GROUP

Benchmark Characterization : Prefix
Scan

* Shows Weak B Compute L1Cache-L2Home

Scalin
5 B L2Home-OffChip

o 12
=
= 1
c
- I
‘5 0,8
2
o
E 0,6
S
< 04 I I
3 TITIIT
E
A | I
g O l . - | I N N N O O
2 8 16 32 64 96 128 160 192 224 256

Thread Count

MEHNN
ARCHITECTURE GROUP

Benchmark Characterization : Prefix
Scan

 Shows Weak

. B Compute L1Cache-L2Home
Scaling

B L2Home-OffChip

-
N

Weak Scaling

=
1

o
00

16 32 64 9 128 160 192 224 256

Thread Count

Normalized Completion Time
&
[
|

MEHNN
ARCHITECTURE GROUP

Benchmark Characterization : Prefix
Scan

* SoftBound has B Compute L1Cache-L2Home

higher overheads _ L
B L2Home-OffChip ™ Synchronization
due to extra

compute and @ 1,6
memory accesses = 14 I
c
5 1,2
(c’ B 1
e ‘S’ shows results %_
with SoftBound £ 0,8
S 06
D 0,4
N
s 0,2
£

o — W
2\
Baseline SoftBound

Thread Count

[:l]NN
ARCHITECTURE GROUP

Benchmark Characterization : Prefix
Scan

* Concurrency hides B Compute L1Cache-L2Home

SoftBound’s . Lok offChio B Svrchronizat
overhead at high ome- ip ™ Synchronization

thread counts
* More Compute
than

Communication
in this Workload

=
(@)

Concurrency Improvement!

R
N b
I

e ‘S’ shows results
with SoftBound

-

o o o o
o N b OO ©

ormalized Completion Time
< o
|

Baseline SoftBound Thread Count

ﬂ[lNN
ARCHITECTURE GROUP

Benc_:hmark Characterization : Matrix

Multiply

* Significant _ B Compute L1Cache-L2Home
Overhead with " = LoH OffChio B Svchronizati
SoftBound § ome- Ip ynchronization

= 2,5
S

* Memory =) I

Bounds %_
Applications € 15
lead to more S
Metadata and o 1
security checks =

@ 0,5
£
L

‘S’ shows > o M
results with N
SoftBound Baseline SoftBound Thread Count

[:[INN
ARCHITECTURE GROUP

Benchmark Characterization : Matrix

Multiply

Concurrency
does reduce
SoftBound’s
overhead at
high thread
counts

* However,
overhead
still quite
significant

S’ shows
results with
SoftBound

[:[INN
ARCHITECTURE GROUP

L1Cache-L2Home
B L2Home-OffChip ™ Synchronization

B Compute

N
Ul

0,1

N
[

0,05

=
= u
192 | B
S L I
224 hl
s B
256 H
s B

Normalized Completion Time
&
o
160 h |
S i

i .
—Wn (o 1%} Sl %] oo wv

N

Baseline SoftBound

s
S [|

32 h |
S
64 h |
S
96 MI
S
128 “I
s |l
160 |
192 |
s |l
224
s |l
256 |
S |

Thread Count

Benc_:hmark Characterization : Matrix

Multiply

* One can get the
Efficiency of the

baseline by

using additional

Threads for
SoftBound

e ‘'S"shows
results with
SoftBound

COMPUTER
ARCHITECTURE GROUP

B Compute L1Cache-L2Home

(0] . e
= B L2Home-OffChip ™ Synchronization
25 ,
- SoftBound Equal to Baseline
o)
£ \
D 2 I 01
2 - |
€ 15 005 o H g
8 0 —m Tem = =
S I o ANV Tun OV

1 O o)) ~N LN
Q — — ~ ~
N]
©

0,5
£ i I .
S " FEE
N
Baseline SoftBound Thread Count

Benchmark Characterization : Breadth
First Search (BFS)

* Another Graph
Workload, B Compute L1Cache-L2Home

however with _ o
higher scalability L2Home-OffChip ™ Synchronization

and Locality

L N

* Concurrency
does reduce
SoftBound’s
overhead at high
thread counts

* However,

overhead still
quite significant

o o o 9
O N B O © B N B O

rmalized Completion Time

* 'S’shows results 2 7
7

with SoftBound Thread Count

Baseline SoftBound

[:l]NN
ARCHITECTURE GROUP

Benchmark Characterization : Breadth
First Search (BFS)

* Concurrency
helps reduce
SoftBound
overhead at high
thread counts

* However,
overhead still
quite significant
because of fine
grained
synchronization
in this workload

e ‘S” shows results
with SoftBound

MEHNN
ARCHITECTURE GROUP

B Compute L1Cache-L2Home
o ®LHomeOfichip|® Synchronization
£ 16
-
- 14
@)
o 1,2
9
o 1
£
8 0,8
< 06
N 04
'® 0,2
£
(ZD 0
/ \ Thread Count

Baseline SoftBound

Benchmark Characterization : Dijkstra

* SoftBound results
in higher on-chip B Compute L1Cache-L2Home

and off-chip data) B L2Home-OffChip ™ Synchronization
accesses, due to £,
. ———

large working set -

o

5 2

2 I

* ‘S’ shows results g— 15

with SoftBound S

- 1

)

N

© 0,5

=

o

2 0

1
S

h

Thread Count

Baseline SoftBound

ﬂ[lNN
ARCHITECTURE GROUP

Benchmark Characterization : Dijkstra

 Scalability is limited
due to fine grained B Compute L1Cache-L2Home

communication H L2Home-OffChip ™ Synchronization

N
92}

e SoftBound checks
within critical
sections hurts
performance

N
I
1

=
U
o

N

e ‘S’ shows results
with SoftBound

O
U

1
I 16S 32S 64S 96S/|
0 iiﬂ _::-_.ll-l-lJJJ

Normalized Completion Time

—————d"—|

Thread Count

\

Baseline SoftBound

m:'““NN COMPUTER
ARCHITECTURE GROUP

Benchmark Characterization : Summary of
Slowdowns

PREFIX

4
©
v
N 35
©
€5 3
Zo © Concurrency Improvement!
w < 25 .
© g Baseline Scales Faster
3 o / Initially
£
E 15
(7))

1

0 50 100 150 200 250

Thread Count

e Concurrency helps hide SoftBound Overheads

[:l]NN
ARCHITECTURE GROUP

Benchmark Characterization : Summary of
Slowdowns

MATMUL

T 4
335 Larger Metadata Size
&‘é ’ SoftBound Scales Inhibits Scalablllty
8 3 Initially
8
o 25
=
c 2
3
S 15
S
2 1
)

0 50 100 150 200 250

Thread Count

e Concurrency helps hide SoftBound Overheads initially at ~32-64 threads

 Then worsens since metadata impacts the available local cache size

[:I]NN
ARCHITECTURE GROUP

Benchmark Characterization : Summary of

Slowdowns

BFS

s 4
c
335 Larger Metadata Size
gg. SoftBound Scales g i L.
5 3 .. Inhibits Scalability
A Initially
o \
25
=
c 2
3
S15
3
o
(Vs

0 50 100 150 200 250

Thread Count

e Concurrency helps hide SoftBound Overheads initially at ~2-8 threads

* Then worsens since metadata impacts critical sections

[:I]NN
ARCHITECTURE GROUP

Benchmark Characterization : Summary of

Slowdowns

DUK
= A
= Larger Metadata Size
Q35 SoftBound Scales Inhibits Scalability
£ 3 a bit
7y
8 / o
25
S
c 2
3
S 15 Cache Effects
3
= 1

50 100 150 200 250
Thread Count

o

e Concurrency helps hide SoftBound Overheads initially at ~2-8 threads

* Then worsens since metadata impacts critical sections

[:I]NN
ARCHITECTURE GROUP

Benchmark Characterization : Slowdowns

in Out-of-Order Cores

e All Prior Results

had In-Order Cores

* Reduction in
performance
degradation
observed

* O0Os improve
critical code
sections

* Latency hiding
helps SoftBound
scale better

[:I]NN
ARCHITECTURE GROUP

Slowdown due to SoftBound

w

N

=

“i N 1w n b

[EEY

o

50

PREFIX BFS

100 150
Thread Count

MATMUL

200

250

Benchmark Characterization :
In-Order vs. Out-of-Order

e Parallel SoftBound
results for both In-
Order and 00O
core types

e At thread counts
showing highest
speedups

B Compute L1Cache-L2Home

B L2Home-OffChip ™ Synchronization

2,5 OO0 Improvements
in Compute Bound Workloads

performance IN 00C IN 00C IN 00C IN 00C

much DIJK Prefix BES Matrix
 Alternative Multiply
architectural
improvements

needed

[:[INN
ARCHITECTURE GROUP

=
= U

* 0OO0OOs can not
improve parallel

o
U

SoftBound Overhead
o

Agenda

Motivation
Characterization Methodology
Characterization Results

Insights and Possible Improvements

M““NN COMPUTER
ARCHITECTURE GROUP

Insights from Characterization

* Most bottlenecks in Multi-threaded SoftBound workloads
stem from Memory Accesses and Synchronization

e Latency Hiding does improve SoftBound using OoO Cores
slightly

* Increase in thread count allows SoftBound to perform as
well as a baseline at a lower thread counts

* However, additional software/architectural mechanisms
are needed to further improve Performance

[:l]NN
ARCHITECTURE GROUP

Potential Future Improvements

* Improve SoftBound’s Metadata structures
* Compression
» Better Layout (e.g. a better tree type of structure)

e Use Parallelization Strategies (e.g. Blocking) that are aware of
Security Metadata’s presence

* Devise a Prefetcher for Security Metadata
* Prefetch SoftBound metadata from DRAM
* Hides SoftBounds latency

[:l]NN
ARCHITECTURE GROUP

