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Key Questions

* What are the performance implications of these
security schemes?

* How do they affect performance in the context of
multicores?

* |[EEE Computer Vision 2022 predicts that Multicores as a key
enabling technology by 2022

* To get started, we look at Buffer Overflow Protection
Schemes

 How do they affect tradeoffs in Multicores?
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A Primer on Buffer Overflow Attacks

e The stack return
address is located
after the program
contents

a+n | Return Address a+n a+2
: Overflow
Other Variables Attack a+2

e An attacker enters a
modified string, 43
overwrites the return
address

overwrites
Return

+
Address a+3

a+2 a+2

a+l a+l

* The return address
now points to the Attacker Attacker takes
malicious code Comes In Control
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Security Solutions and Prior Works

* Dynamic Information Flow Tracking (DIFT) :
* Flags and Tags all data from 1/O
* Raises exceptions of tagged data propagates into program control flow

* High False positive rates, Zero false negatives (Hence not used in
applications)

e Context based Checking :

* Creates a “context”, an identifier for each variable/data structure in the
program

e Checks on each variable read/write

* Large data structure required, 1 element for each array element. Pointer
aliasing problems (Hence also not used in applications)

* Bounds Checking :

* Creates a base and bounds Metadata data structure for a program
* Reads and writes are checked and updated as meta data
* Close to Zero False positives and negatives (Used a lot in Safe languages etc)
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Bound Checking Schemes

 Hardware based Schemes:
e CHERI Bound
* HardBound
 Watchdoglite

Base

e Software based Schemes:

Jsoas

e Cyclone

» SafeCode

* Ccured

* And many others

» Safe Languages such as Python and Java
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Performance Implications in

Multicores

* Previous works
have not analyzed
memory safety
schemes in the
context of
multicores

 All prior works use
sequential
benchmarks such
as SPEC
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Performance Implications

in Multicores : Critical Code

e Critical code sections such as
atomically locked program
functions are most affected.

* Due to bounds checking
stalls, a thread keeps a locked
section for a longer time,
depriving other threads from
exploiting scalability.
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Code Without SoftBound

1. inta=1;

2. pthread_mutex_lock(&lock);
3. do_parallel_work();

4. pthread_mutex_unlock(&Ilock);

5. return O;

Code With SoftBound

1. inta=1;

2. pthread_mutex_lock(&lock);
3. do_parallel_work();

4. Get Security Metadata();

5. SoftBound Checks ();

6. pthread_mutex_unlock(&lock);

/. return O;
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System Model

Multicore Processor
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System Parameters

* The Graphite Simulator is used to
analyze Parallel Benchmarks

256 Cores @ 1 GHz

Results for both in-order and
Out-of-Order cores

L1-I Cache : 32 KB per core
L1-D Cache : 32 KB per core
L2 Cache : 256 KB per core
00O ROB Buffer Size: 168

* An 8 Core Intel machine used as well
(Trends similar as Graphite results)
(Results in Paper)

* POSIX Threading Model is used

Evaluation Includes results for 1-256 Threads
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Architectural Parameter

Value

Number of Cores

256 @ 1 GHz

In-Order Core Setup

Compute Pipeline per Core

| Single-Issue Core

Out-of-Order Core Setup

Compute Pipeline per Core

Single-Issue Core
Out-of-Order Memory

Reorder Buffer Size 168

Load Queue Size 64

Store Queue Size 48
Memory Subsystem

L1-I Cache per core
L1-D Cache per core
L2 Cache per core

Cache Line Size
Directory Protocol

Num. of Memory Controllers
DRAM Bandwidth
DRAM Latency

32 KB, 4-way Assoc., | cycle

32 KB, 4-way Assoc., 1 cycle
256 KB, 8-way Assoc., 8 cycle
Inclusive, NUCA

64 bytes

Invalidation-based MESI
ACKWisey [[11]] limited directory
8

5 GBps per Controller

100 ns

Electrical 2-D Mesh with XY Routing

Hop Latency
Contention Model

Flit Width

2 cycles (1-router, 1-link)
Only link contention
(Infinite input buffers)

64 bits




Evaluated Benchmarks

Prefix Scan — 16M elements

* Each Thread gets a chunk to scan, then the Master Thread reduces the scans of other threads to
get the final solution

* Barriers used to do explicit Synchronization

Matrix Multiply — 1K x 1K

* Each Thread Tiles a chunk of the matrix, and multiplies to get the final matrix
* Barriers used to do explicit Synchronization

Breadth First Search (BFS) — 1M vertices, 16MM edges
* Each Thread gets a chunk of the graph to search on

* Atomic locks used on all graph vertices to ensure that no race conditions occur in shared vertices

Dijkstra — 16K vertices, 134M edges

* Checking neighboring nodes for shortest path distances parallelized among threads
* Explicit Barriers to progress each node check
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Benchmark Characterization : Prefix
Scan
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Benchmark Characterization : Prefix
Scan
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Benchmark Characterization : Prefix
Scan

 Shows Weak
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Benchmark Characterization : Prefix
Scan

* SoftBound has B Compute L1Cache-L2Home

higher overheads _ L
B L2Home-OffChip ™ Synchronization
due to extra

compute and @ 1,6
memory accesses = 14 I
c
5 1,2
(c’ B 1
e ‘S’ shows results %_
with SoftBound £ 0,8
S 06
D 0,4
N
s 0,2
£

o — W
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Benchmark Characterization : Prefix
Scan

* Concurrency hides B Compute L1Cache-L2Home

SoftBound’s . Lok offChio B Svrchronizat
overhead at high ome- ip ™ Synchronization

thread counts
* More Compute
than

Communication
in this Workload
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Benc_:hmark Characterization : Matrix

Multiply

* Significant _ B Compute L1Cache-L2Home
Overhead with " = LoH OffChio B Svchronizati
SoftBound § ome- Ip ynchronization

= 2,5
S

* Memory = ) I
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Metadata and o 1
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@ 0,5
£
L

‘S’ shows > o M
results with N
SoftBound Baseline SoftBound Thread Count

[:[INN
ARCHITECTURE GROUP



Benchmark Characterization : Matrix

Multiply

Concurrency
does reduce
SoftBound’s
overhead at
high thread
counts

* However,
overhead
still quite
significant

S’ shows
results with
SoftBound
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Benc_:hmark Characterization : Matrix

Multiply

* One can get the
Efficiency of the

baseline by

using additional

Threads for
SoftBound

e ‘'S"shows
results with
SoftBound
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Benchmark Characterization : Breadth
First Search (BFS)

* Another Graph
Workload, B Compute L1Cache-L2Home

however with _ o
higher scalability L2Home-OffChip ™ Synchronization

and Locality

L N

* Concurrency
does reduce
SoftBound’s
overhead at high
thread counts

* However,

overhead still
quite significant

o o o 9
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Benchmark Characterization : Breadth
First Search (BFS)

* Concurrency
helps reduce
SoftBound
overhead at high
thread counts

* However,
overhead still
quite significant
because of fine
grained
synchronization
in this workload

e ‘S” shows results
with SoftBound
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Benchmark Characterization : Dijkstra

* SoftBound results
in higher on-chip B Compute L1Cache-L2Home
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Benchmark Characterization : Dijkstra

 Scalability is limited
due to fine grained B Compute L1Cache-L2Home

communication H L2Home-OffChip ™ Synchronization
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Benchmark Characterization : Summary of
Slowdowns

PREFIX
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e Concurrency helps hide SoftBound Overheads
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Benchmark Characterization : Summary of
Slowdowns

MATMUL
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e Concurrency helps hide SoftBound Overheads initially at ~32-64 threads

 Then worsens since metadata impacts the available local cache size
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Benchmark Characterization : Summary of

Slowdowns
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e Concurrency helps hide SoftBound Overheads initially at ~2-8 threads

* Then worsens since metadata impacts critical sections
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Benchmark Characterization : Summary of

Slowdowns
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e Concurrency helps hide SoftBound Overheads initially at ~2-8 threads

* Then worsens since metadata impacts critical sections
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Benchmark Characterization : Slowdowns

in Out-of-Order Cores

e All Prior Results

had In-Order Cores

* Reduction in
performance
degradation
observed

* O0Os improve
critical code
sections

* Latency hiding
helps SoftBound
scale better
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Benchmark Characterization :
In-Order vs. Out-of-Order

e Parallel SoftBound
results for both In-
Order and 00O
core types

e At thread counts
showing highest
speedups

B Compute L1Cache-L2Home

B L2Home-OffChip ™ Synchronization

2,5 OO0 Improvements
in Compute Bound Workloads

performance IN 00C IN 00C IN 00C IN 00C

much DIJK Prefix BES  Matrix
 Alternative Multiply
architectural
improvements

needed
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Insights from Characterization

* Most bottlenecks in Multi-threaded SoftBound workloads
stem from Memory Accesses and Synchronization

e Latency Hiding does improve SoftBound using OoO Cores
slightly

* Increase in thread count allows SoftBound to perform as
well as a baseline at a lower thread counts

* However, additional software/architectural mechanisms
are needed to further improve Performance
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Potential Future Improvements

* Improve SoftBound’s Metadata structures
* Compression
» Better Layout (e.g. a better tree type of structure)

e Use Parallelization Strategies (e.g. Blocking) that are aware of
Security Metadata’s presence

* Devise a Prefetcher for Security Metadata
* Prefetch SoftBound metadata from DRAM
* Hides SoftBounds latency
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