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Growing need to protect system … 

!  Attackers try to control the system behavior in all aspects 
§ Capture various system events and manipulate the events for their profits 

!  Methods to acquire such capabilities 
§ Code Injection Attack 

-  Attackers first inject their own code in the memory 
-  Execute the code after hijacking the normal course of execution 
-  Writable xor eXecutable (W⊕X) policy effectively prevents the code injection attacks. 

§ Code Reuse Attack (CRA) 
-  Obey the W⊕X policy: do not rely on injected code 
-  Launch an attack by stitching existing code snippets (gadgets) into a new code sequenc

e 
-  E.g.) Return-oriented programming (ROP), Jump-oriented programming (JOP) 
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Return-oriented Programming 

!   from “Smashing the Gadgets, S&P ’12” 
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0xb8800000!

0x00000001!

0xb8800010!

0x00000002!

0xb8800020!

0xb8800010!

0x00400000!

0xb8800030!

Stack! Code!

0xb8800000:!
  pop eax!
  ret 
...!
0xb8800010:!
  pop ebx!
  ret!
...!
0xb8800020:!
  add eax, ebx!
  ret!
...!
0xb8800030:!
  mov [ebx],eax!
  ret!

esp!

Actions!

eax = 1!

ebx = 2!

eax += ebx!

ebx = 0x400000!

*ebx = eax!

Overwrite stack contents 
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Return-oriented Programming 

!  The return addresses in the stack are manipulated by attackers
. 
§ Consequently, the return addresses do not point to the original call sites. 

!  Solution : Shadow Call Stack 
§ Basically consists in maintaining a copy of the call stack of the program run

ning on the host processor 
§ On an identified CALL instruction, the return address is pushed on the shad

ow call stack. 
§ On an identified RET instruction, the return address is checked against the 

saved one. 
§ This solution is considered to be one of the fine-grained ROP defenses. 
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The Objectives of This Work 

!  Detect ROP attacks on ARM-based mobile devices 
§ Smart mobile devices continue to gain in popularity among the general publ

ic è becoming more appealing targets of software-oriented attacks. 
§ ARM is the de-facto standard CPU for diverse mobile devices. 

!  Pursue hardware-based CRA detection 
§ Especially for ROP detection in this work 
§ Special hardware modules are added for detecting ROPs to minimize the p

erformance overhead. 

!  Seek for the suitable solution for ARM-based AP design 
§ These days, to make AP, device vendors usually buy COTS ARM cores an

d integrate them together with supporting IPs. 
§ Our solution should not require the modification of internal microarchitectur

e of ARM cores. è Exploit built-in ARM CoreSight to extract the program e
xecution behaviors outside the host 
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Related Work 

!  Hardware-based CRA detection 
§ SmashGuard (IEEE Transactions on Computer’07) 

-  Hardware shadow stack 
§ Branch Regulation (ISCA’12) 

-  Thwart ROP and JOP attacks by enforcing a simple invariant ruling the normal behavior
s of branches in a programming language. 

§ SCRAP (HPCA’13) 
-  Signature based JOP defense 

§ Hardware-based CFI (DAC’14) 
-  Simple backward-edge flow integrity enforcement by checking that the return instruction 

transfers to the address within an active function. 

!  Exploiting built-in hardware debug architecture 
§ Extrax (DATE’15) 

-  A kernel integrity monitor using the core debug interface for SPARC processors 
-  First approach that utilizes the debug interface in an effort to thwart security threats 

§ No work has been implemented in ARM-based mobile devices. 
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Assumption 

!  The system enforces the (W⊕X) security protection rule. 

!  No other security holes which can directly escalate adversary’s
 privilege are assumed. 

!  Adversaries might exploit memory corruption vulnerabilities. 

!  Adversaries can bypass the address space layout randomizati
on (ASLR). 

!  Self-modifying code is not considered. 
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Architecture for ROP Detection 

!  System Components 
§ ROP monitor 

-  A subsystem where monitoring modules for ROP detection are integrated together. 
-  Branch Trace Analyzer (BTA), Shadow Call Stack (SCS) 

§ CPU : Cortex-A9 processor 
-  Equipped with PTM, TPIU : ARM CoreSight debug modules 

§ Main bus : AMBA3 AXI interconnect 
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<AP platform integrated together with the ROP monitor> 
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Branch Trace Analyzer (BTA) 

!  ARM CoreSight PTM/TPIU 
§ PTM captures diverse debug information for the ARM CPU. 

-  Branch target addresses, exceptions, current PID, instruction set mode change (ARM/T
HUMB) and so on 

-  Produce the generic form of the tracing data 
§ Generated PTM traces are routed to TPIU, and then forwarded to the exter

nal debuggers via off-chip pins. 

10 
<ARM CoreSight Debug Architecture (here, ETMs are used)> 
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Branch Trace Analyzer (BTA) 

!   In our work, the TPIU output signals are routed to BTA 
§ BTA uses these signals to extract useful information for ROP detection. 

!  Submodules of BTA 
§ Trace Analyzer 

-  Decode the PTM traces to extract branch types and target addresses 
-  Generate necessary information used by the Shadow Call Stack 

•   (call, return, source address, target address) 

§ Branch Trace FIFO 
-  Bridge the frequency gap between CPU and the ROP monitor 

-  Temporarily store the incoming traces from TPIU 
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<Block Diagram of BTA> 
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Branch Trace Analyzer (BTA) 

!  PTM traces are insufficient to interpret the branch behaviors on
 the host CPU. 
§ PTM traces do not carry branch types and target addresses of direct branc

h instructions. 
!  To supplement lacking information, we perform offline binary a

nalysis and generate the set of meta-data. 
§ Branch type (e.g., jump type : b, bl, call type : bx, blx) 
§ Source and/or target addresses of branch Instructions 
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Address  Code  Decoded instruction 
1c496:  f7f2 fd13  bl  eec0 <__errno>    
1c49a:  2416       movs  r4, #22    
1c49c:  6004       str  r4, [r0, #0]    
1c49e:  2400       movs  r4, #0    
1c4a0:  e078       b.n  1c594 <popen+0x134>    
1c4a2:  200c       movs  r0, #12    
1c4a4:  f7f0 fd26  bl  cef4 <malloc>    
1c4a8:  9001       str  r0, [sp, #4]    
1c4aa:  2800       cmp  r0, #0 

 

Meta-data 
eec0 

. 

. 

. 
1c594 

. 

. 

. 
cef4 

 

√ 

√ 

√ 

Omitted information in PTM traces 
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ROP Detection Process 

!  1st phase (SW Binary Analyzer) 
§ Generate the static information of the target system for ROP detection 
§ Resulting information is summarized in the form of meta-data 

!  2nd phase (HW ROP Monitor) 
§ Runtime detection of ROP attacks 
§ Using the generated meta-data, the ROP monitor gets to know the executio

n behaviors of the target program. 

13 
<ROP Detection Process> 
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Meta-data Layout 

!  Binary Analyzer  
§ Divide the application code into multiple code regions on every control trans

fer instruction è Unique region number is given. 
§ Extract branch types according to the ARM’s function calling convention 

-  Call : bl (branch with link) or blx (branch with link and exchange) 
-  Return : branch instruction with the link register (LR) 

§ Branch source and/or target addresses should be saved. 

14 
<Meta-data Layout> 
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Shadow Call Stack (SCS) 

!  SCS receives input signals from BTA 
§ addr_in, call, return 

!  Main Submodules 
§ Queue Controller : maintain a shadow copy of the call stack 
§ Address Comparator : compare the runtime return address against the add

ress saved in the address queue 

15 
<Block Diagram of SCS> 
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ROP Detection Procedure with Meta-data 
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1) func_3 is invoked 2) Source address is saved in SCS. 

3) func_3 returns 
4) SCS checks the return address is 0x8048 (the 
next address of the call site).  
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Experimental Environment 

!  Full-system prototype impleme
nted on Xilinx Zynq-7000 XC70
20 platform 
§ Cortex-A9 host processor 

-  PTM, TPIU included 
-  Running at 200MHz 

§ ROP monitor 
-  Running at 90MHz 
-  Occupying 13.8% of LUTs (7,362/53,200) 

and 3.1% of BRAMs (539/17,400) 
-  86,714 GC by Synopsys DC using a com

mercial 45-nm library 
§ Linux 3.8 kernel 

!  Tested with ten applications in 
Mibench test suite 
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Performance 

!  Configurations 
§ Base : native host program 
§ Ours : host program with PTM/PTIU and ROP monitor enabled 

!  About 2.39% overhead on average 
§ Caused by resource(memory) conflicts between the host CPU and the RO

P monitor. 
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Conclusion and Future Extension 

!  This paper introduces a hardware ROP monitor for ARM-base
d smart mobile devices. 

!  The proposed monitor shows negligible performance overhead
, and can be implemented without any modifications of the proc
essor internal. 

!  Consequently, the proposed architecture would become an attr
active CRA defense solution to ARM-based AP platforms. 

!  The proposed architecture can be further applied to thwart cont
rol flow hijacking attacks by slightly modifying the meta-data lay
out and adding additional hardware elements. 
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Thank You 


