Towards a Practical Solution to Detect C
ode Reuse Attacks on ARM Mobile Devi
ces

2015.6.14

Yongje Lee”, Ingoo Heo, Dongil Hwang, Kyungmin Kim and Yunheung Paek
Seoul National University, Korea

*Speaker

% SEOUL

S Optimizationi8aRestructuring Laboratory.

Contents

® Related Work and Assumptions

® Architecture for ROP detection

® Experimental Results
® Conclusion and Future Extension

@ SEOUL o
sy OR

RESEAROH GROUP

S Optimization &Restructuring Laboratory

Growing need to protect system ...

®© Attackers try to control the system behavior in all aspects
= Capture various system events and manipulate the events for their profits

® Methods to acquire such capabilities

= Code Injection Attack
- Attackers first inject their own code in the memory
- Execute the code after hijacking the normal course of execution
- Writable xor eXecutable (\WeX) policy effectively prevents the code injection attacks.

» Code Reuse Attack (CRA)

- Obey the WX policy: do not rely on injected code

- Launch an attack by stitching existing code snippets (gadgets) into a new code sequenc
e

- E.g.) Return-oriented programming (ROP), Jump-oriented programming (JOP)

Return-oriented Programming

S.Op llmtl.él!lsn 88Restructuring LLaboratory.

® from “Smashing the Gadgets, S&P 12"

Stack

esp | 0xb8800000 |
0x00000001
0xb8800010
0x00000002

0xb8800010
0x00400000
0xb8800030

Overwrite stack contents <+—

Code

“ 0xb8800000:

| pop eax |
ret

/ 0xb8800010:

| pop ebx]
ret

0xb8800020:
| add eax, ebﬂ
ret

0xb8800030:
| mov [ebx],eax |

ret
4

Actions
eax = 1
ebx = 2

eax += ebx
ebx = 0x400000

*ebx = eax

i ea] Optimizatioést}'ucturing Laboratory.

Return-oriented Programming

® The return addresses in the stack are manipulated by attackers

= Consequently, the return addresses do not point to the original call sites.

@ Solution : Shadow Call Stack

= Basically consists in maintaining a copy of the call stack of the program run
ning on the host processor

» On an identified CALL instruction, the return address is pushed on the shad
ow call stack.

* On an identified RET instruction, the return address is checked against the
saved one.

» This solution is considered to be one of the fine-grained ROP defenses.

i ea] Optimizatioést}'ucturing Laboratory.

The Objectives of This Work

® Detect ROP attacks on ARM-based mobile devices

= Smart mobile devices continue to gain in popularity among the general publ
ic = becoming more appealing targets of software-oriented attacks.

= ARM is the de-facto standard CPU for diverse mobile devices.

@® Pursue hardware-based CRA detection
= Especially for ROP detection in this work

» Special hardware modules are added for detecting ROPs to minimize the p
erformance overhead.

® Seek for the suitable solution for ARM-based AP design

» These days, to make AP, device vendors usually buy COTS ARM cores an
d integrate them together with supporting IPs.

= QOur solution should not require the modification of internal microarchitectur

e of ARM cores. = Exploit built-in ARM CoreSight to extract the program e

xecution behaviors outside the host
6

S Optimization 4Restructuring Laboratory

Related Work

® Hardware-based CRA detection

» SmashGuard (IEEE Transactions on Computer’07)
- Hardware shadow stack

= Branch Regulation (ISCA’'12)

- Thwart ROP and JOP attacks by enforcing a simple invariant ruling the normal behavior
s of branches in a programming language.

= SCRAP (HPCA'13)
- Signature based JOP defense

» Hardware-based CFI (DAC’14)

- Simple backward-edge flow integrity enforcement by checking that the return instruction
transfers to the address within an active function.

@ Exploiting built-in hardware debug architecture
= Extrax (DATE’15)

- A kernel integrity monitor using the core debug interface for SPARC processors
- First approach that utilizes the debug interface in an effort to thwart security threats

= No work has been implemented in ARM-based mobile devices.

7

> s ptimizatio' estructuring Laboratory,

Assumption

® The system enforces the (W& X) security protection rule.

@ No other security holes which can directly escalate adversary’s
privilege are assumed.

® Adversaries might exploit memory corruption vulnerabilities.

® Adversaries can bypass the address space layout randomizati
on (ASLR).

@ Self-modifying code is not considered.

S.Op llmtl.él!lsn 88Restructuring LLaboratory.

Architecture for ROP Detection

® System Components

= ROP monitor
- A subsystem where monitoring modules for ROP detection are integrated together.

- Branch Trace Analyzer (BTA), Shadow Call Stack (SCS)

» CPU : Cortex-A9 processor
- Equipped with PTM, TPIU : ARM CoreSight debug modules

= Main bus : AMBA3 AXI interconnect

Host Processor ROP Monitor
Main
Cortex-A9 Core Branch Memory
ranc Shadow Call
¥ " Trace] Stack I
Analyzer)
PTM > TPIU Memory
, ‘ Controller
< AXI Interconnect (Master/Slave) >

<AP platform integrated together with the ROP monitor>
9

e e SOptimizatioéé’tructuring LLaboratory.

® ARM CoreSight PTM/TPIU

= PTM captures diverse debug information for the ARM CPU.

- Branch target addresses, exceptions, current PID, instruction set mode change (ARM/T
HUMB) and so on

- Produce the generic form of the tracing data

= Generated PTM traces are routed to TPIU, and then forwarded to the exter
nal debuggers via off-chip pins.

DSTREAM
JTAG Debug & Trace

Embedded
Trace Router

<ARM CoreSight Debug Architecture (here, ETMs are used)>
10

% o .
8aRestructuring Laboratory.

Branch Trace Analyzer (BTA)

@ In our work, the TPIU output signals are routed to BTA
» BTA uses these signals to extract useful information for ROP detection.

® Submodules of BTA

» Trace Analyzer
- Decode the PTM traces to extract branch types and target addresses

- Generate necessary information used by the Shadow Call Stack
* (call, return, source address, target address)

» Branch Trace FIFO
- Bridge the frequency gap between CPU and the ROP monitor

)

A\ 4

Branch Trace Analyzer |

. Main
= Memory
Branch 2
PTM trace . Trace R Trace | Shadow | __J8[
from TPTU . 1 Analyzer 1 Call Stack | E|
FIFO y 2

<Block Diagram of BTA>
11

% o .
8aRestructuring Laboratory.

Branch Trace Analyzer (BTA)

® PTM traces are insufficient to interpret the branch behaviors on
the host CPU.

= PTM traces do not carry branch types and target addresses of direct branc
h instructions.

@ To supplement lacking information, we perform offline binary a
nalysis and generate the set of meta-data.
» Branch type (e.g., jump type : b, bl, call type : bx, blx)
= Source and/or target addresses of branch Instructions

Address Code Decoded instruction Meta-data
\| 1c496: frf2 fd13 bl eec0 <__errno> eecO
1c49a: 2416 movs r4, #22 .
1c49c: 6004 str r4, [r0, #0]
1c49e: 2400 movs r4, #0 .
V| 1c4a0: e078 b.n 1¢c594 <popen+0x134> 1¢c594
1cd4a2: 200c movs ro, #12 .
/| 1cda4: f7f0 fd26 bl cef4 <malloc>
1c4a8: 9001 str r0, [sp, #4] .
1cdaa: 2800 cmp r0, #0 cefd
Omitted information in PTM traces

12

S.Op llmtl.él!lsn 88Restructuring LLaboratory.

ROP Detection Process

® 18t phase (SW Binary Analyzer)
» Generate the static information of the target system for ROP detection
= Resulting information is summarized in the form of meta-data

® 2" phase (HW ROP Monitor)

= Runtime detection of ROP attacks

» Using the generated meta-data, the ROP monitor gets to know the executio
n behaviors of the target program.

Runtime Detection Process , Offline Binary Analysis

|
|

ROP Monitor I Program Binary

: I

PTM traces B,lf anch | Shadow | Binary Analyzer
KN TE race Call Stack | | !
Analyzer I
|
— !
Detection |
Results |
I

<ROP Detect1i30n Process>

~ sopt nization@aRestructuring Laboratory,

Meta-data Layout

® Binary Analyzer

= Divide the application code into multiple code regions on every control trans
fer instruction =» Unique region number is given.

= Extract branch types according to the ARM'’s function calling convention
- Call : bl (branch with link) or blx (branch with link and exchange)
- Return : branch instruction with the link register (LR)

» Branch source and/or target addresses should be saved.

<Application> <Region Info Jump Table>
Instruction B-type Region Info Jump Address
i - - - <Region Info Set>
E [aaare, o, 216 % 001 | Regionm InfoAddress
‘go_ bicst4,10 [—# 001 | Regionm InfoAddress /' Branch source address
% | | 1arr2, 8. #120) —+ 001 | Region m Info Address Branch target address
g ! bl B | 001 | Regionm InfoAddress
- | . Branch source address
& [| B:movrL3 —+ 100 | RegionnInfoAddress /
5—‘ addrl,rl.r2 |—H 100 | Regionn Info Address
'§ mov pc, Ir 100 Region n Info Address
gL

<Meta-data Layout>
14

S Optimization @4Restructuring Laboratory

® SCS receives input signals from BTA
= addr_in, call, return

® Main Submodules

» Queue Controller : maintain a shadow copy of the call stack

» Address Comparator : compare the runtime return address against the add
ress saved in the address queue

mismatch
mterrupt < | Address e
Comparator | 244r_out oy
* — N\
||
1 — =
push |mmmm| push c
call > > | > .
Queue POP | PP | 5 - Main
retum »| Controller counter | wmmm | counter | & A Memory
> — | & |£'b
| — ¢ |et—>S |e—>
addr_in > m— g
—
Address 2
Queue R

<Block Diag|1|;am of SCS>

RN o
S Optimization @Restructuring Laboratory,

ROP Detection Procedure with Meta-data

1) func_3 is invoked 2) Source address is saved in SCS.
Region info
Address Instruction B-type jump
address
(| oxg040 | add 19,19, #16 » 001
oH A 0x8044 (source address)
|| oxsoss bl func_3 * 001
¢’6\0 L 0x8060 (target address)
<& or DESTET0 o OxX80S0(source aaadress)
%'»— 0x804c Idr r2, [r8, #120] * 011 A+0x8)
o N .
S || 0xB050 bix r2 * 011 * 0x8074 (source address)
<€ *’\r—[A+0xc >
o(‘ ~
06\ 0x8060 | func_3:movrl,r3 » 100
Q€
£, A+0x10
Q}Q\oo r 0x8074 mov pg, Ir » 100
< OX8078 Tunc_a"PUSH {10 [r— A+0x14

4) SCS checks the return address is 0x8048 (the
next address of the call site).

16

3) func_3 returns

S OptimizationgaRestructuring Laboratory.

Experimental Environment

® Full-system prototype impleme
nted on Xilinx Zyng-7000 XC70
20 platform

= Cortex-A9 host processor
- PTM, TPIU included
- Running at 200MHz

= ROP monitor
- Running at 90MHz

- Occupying 13.8% of LUTs (7,362/53,200)
and 3.1% of BRAMSs (539/17,400)

- 86,714 GC by Synopsys DC using a com
mercial 45-nm library

= |inux 3.8 kernel

@ Tested with ten applications in
Mibench test suite

17

S.Op llmtl.él!lsn 88Restructuring LLaboratory.

Performance

® Configurations
= Base : native host program
» Qurs : host program with PTM/PTIU and ROP monitor enabled

® About 2.39% overhead on average

» Caused by resource(memory) conflicts between the host CPU and the RO

P monitor.
1.06

1.04

OBase mOurs

1.02

1 | — — — — — — _ _ _ _ _
0.98
0.96
0.94
0.92
09

18

Conclusion and Future Extension

® This paper introduces a hardware ROP monitor for ARM-base
d smart mobile devices.

@ The proposed monitor shows negligible performance overhead
, and can be implemented without any modifications of the proc
essor internal.

® Consequently, the proposed architecture would become an attr
active CRA defense solution to ARM-based AP platforms.

@ The proposed architecture can be further applied to thwart cont
rol flow hijacking attacks by slightly modifying the meta-data lay
out and adding additional hardware elements.

19

gaRestructuring Laboratory.

Thank You

20

