
1 1

*Speaker

2015.6.14

Yongje Lee*, Ingoo Heo, Dongil Hwang, Kyungmin Kim and Yunheung Paek
Seoul National University, Korea

Towards a Practical Solution to Detect C
ode Reuse Attacks on ARM Mobile Devi

ces

S Optimization & Restructuring Laboratory

Contents

2

CONTENTS

Overview

Related Work and Assumptions

Architecture for ROP detection

Conclusion and Future Extension

Experimental Results

S Optimization & Restructuring Laboratory

Growing need to protect system …

!  Attackers try to control the system behavior in all aspects
§ Capture various system events and manipulate the events for their profits

!  Methods to acquire such capabilities
§ Code Injection Attack

-  Attackers first inject their own code in the memory
-  Execute the code after hijacking the normal course of execution
-  Writable xor eXecutable (W⊕X) policy effectively prevents the code injection attacks.

§ Code Reuse Attack (CRA)
-  Obey the W⊕X policy: do not rely on injected code
-  Launch an attack by stitching existing code snippets (gadgets) into a new code sequenc

e
-  E.g.) Return-oriented programming (ROP), Jump-oriented programming (JOP)

3

S Optimization & Restructuring Laboratory

Return-oriented Programming

!   from “Smashing the Gadgets, S&P ’12”

4

0xb8800000!

0x00000001!

0xb8800010!

0x00000002!

0xb8800020!

0xb8800010!

0x00400000!

0xb8800030!

Stack! Code!

0xb8800000:!
 pop eax!
 ret
...!
0xb8800010:!
 pop ebx!
 ret!
...!
0xb8800020:!
 add eax, ebx!
 ret!
...!
0xb8800030:!
 mov [ebx],eax!
 ret!

esp!

Actions!

eax = 1!

ebx = 2!

eax += ebx!

ebx = 0x400000!

*ebx = eax!

Overwrite stack contents

S Optimization & Restructuring Laboratory

Return-oriented Programming

!  The return addresses in the stack are manipulated by attackers
.
§ Consequently, the return addresses do not point to the original call sites.

!  Solution : Shadow Call Stack
§ Basically consists in maintaining a copy of the call stack of the program run

ning on the host processor
§ On an identified CALL instruction, the return address is pushed on the shad

ow call stack.
§ On an identified RET instruction, the return address is checked against the

saved one.
§ This solution is considered to be one of the fine-grained ROP defenses.

5

S Optimization & Restructuring Laboratory

The Objectives of This Work

!  Detect ROP attacks on ARM-based mobile devices
§ Smart mobile devices continue to gain in popularity among the general publ

ic è becoming more appealing targets of software-oriented attacks.
§ ARM is the de-facto standard CPU for diverse mobile devices.

!  Pursue hardware-based CRA detection
§ Especially for ROP detection in this work
§ Special hardware modules are added for detecting ROPs to minimize the p

erformance overhead.

!  Seek for the suitable solution for ARM-based AP design
§ These days, to make AP, device vendors usually buy COTS ARM cores an

d integrate them together with supporting IPs.
§ Our solution should not require the modification of internal microarchitectur

e of ARM cores. è Exploit built-in ARM CoreSight to extract the program e
xecution behaviors outside the host

6

S Optimization & Restructuring Laboratory

Related Work

!  Hardware-based CRA detection
§ SmashGuard (IEEE Transactions on Computer’07)

-  Hardware shadow stack
§ Branch Regulation (ISCA’12)

-  Thwart ROP and JOP attacks by enforcing a simple invariant ruling the normal behavior
s of branches in a programming language.

§ SCRAP (HPCA’13)
-  Signature based JOP defense

§ Hardware-based CFI (DAC’14)
-  Simple backward-edge flow integrity enforcement by checking that the return instruction

transfers to the address within an active function.

!  Exploiting built-in hardware debug architecture
§ Extrax (DATE’15)

-  A kernel integrity monitor using the core debug interface for SPARC processors
-  First approach that utilizes the debug interface in an effort to thwart security threats

§ No work has been implemented in ARM-based mobile devices.

7

S Optimization & Restructuring Laboratory

Assumption

!  The system enforces the (W⊕X) security protection rule.

!  No other security holes which can directly escalate adversary’s
 privilege are assumed.

!  Adversaries might exploit memory corruption vulnerabilities.

!  Adversaries can bypass the address space layout randomizati
on (ASLR).

!  Self-modifying code is not considered.

8

S Optimization & Restructuring Laboratory

Architecture for ROP Detection

!  System Components
§ ROP monitor

-  A subsystem where monitoring modules for ROP detection are integrated together.
-  Branch Trace Analyzer (BTA), Shadow Call Stack (SCS)

§ CPU : Cortex-A9 processor
-  Equipped with PTM, TPIU : ARM CoreSight debug modules

§ Main bus : AMBA3 AXI interconnect

9

<AP platform integrated together with the ROP monitor>

S Optimization & Restructuring Laboratory

Branch Trace Analyzer (BTA)

!  ARM CoreSight PTM/TPIU
§ PTM captures diverse debug information for the ARM CPU.

-  Branch target addresses, exceptions, current PID, instruction set mode change (ARM/T
HUMB) and so on

-  Produce the generic form of the tracing data
§ Generated PTM traces are routed to TPIU, and then forwarded to the exter

nal debuggers via off-chip pins.

10
<ARM CoreSight Debug Architecture (here, ETMs are used)>

S Optimization & Restructuring Laboratory

Branch Trace Analyzer (BTA)

!   In our work, the TPIU output signals are routed to BTA
§ BTA uses these signals to extract useful information for ROP detection.

!  Submodules of BTA
§ Trace Analyzer

-  Decode the PTM traces to extract branch types and target addresses
-  Generate necessary information used by the Shadow Call Stack

•  (call, return, source address, target address)

§ Branch Trace FIFO
-  Bridge the frequency gap between CPU and the ROP monitor

-  Temporarily store the incoming traces from TPIU

11

<Block Diagram of BTA>

S Optimization & Restructuring Laboratory

Branch Trace Analyzer (BTA)

!  PTM traces are insufficient to interpret the branch behaviors on
 the host CPU.
§ PTM traces do not carry branch types and target addresses of direct branc

h instructions.
!  To supplement lacking information, we perform offline binary a

nalysis and generate the set of meta-data.
§ Branch type (e.g., jump type : b, bl, call type : bx, blx)
§ Source and/or target addresses of branch Instructions

12

Address Code Decoded instruction
1c496: f7f2 fd13 bl eec0 <__errno>
1c49a: 2416 movs r4, #22
1c49c: 6004 str r4, [r0, #0]
1c49e: 2400 movs r4, #0
1c4a0: e078 b.n 1c594 <popen+0x134>
1c4a2: 200c movs r0, #12
1c4a4: f7f0 fd26 bl cef4 <malloc>
1c4a8: 9001 str r0, [sp, #4]
1c4aa: 2800 cmp r0, #0

Meta-data
eec0

.

.

.
1c594

.

.

.
cef4

√

√

√

Omitted information in PTM traces

S Optimization & Restructuring Laboratory

ROP Detection Process

!  1st phase (SW Binary Analyzer)
§ Generate the static information of the target system for ROP detection
§ Resulting information is summarized in the form of meta-data

!  2nd phase (HW ROP Monitor)
§ Runtime detection of ROP attacks
§ Using the generated meta-data, the ROP monitor gets to know the executio

n behaviors of the target program.

13
<ROP Detection Process>

S Optimization & Restructuring Laboratory

Meta-data Layout

!  Binary Analyzer
§ Divide the application code into multiple code regions on every control trans

fer instruction è Unique region number is given.
§ Extract branch types according to the ARM’s function calling convention

-  Call : bl (branch with link) or blx (branch with link and exchange)
-  Return : branch instruction with the link register (LR)

§ Branch source and/or target addresses should be saved.

14
<Meta-data Layout>

S Optimization & Restructuring Laboratory

Shadow Call Stack (SCS)

!  SCS receives input signals from BTA
§ addr_in, call, return

!  Main Submodules
§ Queue Controller : maintain a shadow copy of the call stack
§ Address Comparator : compare the runtime return address against the add

ress saved in the address queue

15
<Block Diagram of SCS>

S Optimization & Restructuring Laboratory

ROP Detection Procedure with Meta-data

16

1) func_3 is invoked 2) Source address is saved in SCS.

3) func_3 returns
4) SCS checks the return address is 0x8048 (the
next address of the call site).

S Optimization & Restructuring Laboratory

Experimental Environment

!  Full-system prototype impleme
nted on Xilinx Zynq-7000 XC70
20 platform
§ Cortex-A9 host processor

-  PTM, TPIU included
-  Running at 200MHz

§ ROP monitor
-  Running at 90MHz
-  Occupying 13.8% of LUTs (7,362/53,200)

and 3.1% of BRAMs (539/17,400)
-  86,714 GC by Synopsys DC using a com

mercial 45-nm library
§ Linux 3.8 kernel

!  Tested with ten applications in
Mibench test suite

17

S Optimization & Restructuring Laboratory

Performance

!  Configurations
§ Base : native host program
§ Ours : host program with PTM/PTIU and ROP monitor enabled

!  About 2.39% overhead on average
§ Caused by resource(memory) conflicts between the host CPU and the RO

P monitor.

18

S Optimization & Restructuring Laboratory

Conclusion and Future Extension

!  This paper introduces a hardware ROP monitor for ARM-base
d smart mobile devices.

!  The proposed monitor shows negligible performance overhead
, and can be implemented without any modifications of the proc
essor internal.

!  Consequently, the proposed architecture would become an attr
active CRA defense solution to ARM-based AP platforms.

!  The proposed architecture can be further applied to thwart cont
rol flow hijacking attacks by slightly modifying the meta-data lay
out and adding additional hardware elements.

19

S Optimization & Restructuring Laboratory

20

Thank You

