
Can randomized mapping secure 
instruction caches from
side-channel attacks?

Fangfei Liu, Hao Wu and Ruby B. Lee

Princeton University

June 14, 2015



2

• Motivation and Background
• Data cache attacks and defenses

• Random-Fixed mapping and Newcache

• Constructing instruction cache attacks

• Effectiveness of Random-Fixed mapping to I-cache 
attacks

• Power and system performance

• Conclusions

Outline



Cache side channel attacks

• Information leakage by exploiting timing difference 
between cache hit and cache miss

• The cache is a shared resource
• Cache state affects, and is affected by all processes
• Cache contention

• Cryptanalysis through cache address leakage
• No disclosure of data stored in the cache

• The “metadata” leaks information about memory 
access patterns
• Which addresses are being accessed
• Memory access patterns depend on the secret key



Data cache attacks

• Secret dependent memory indexing 

4

s0 = GETU32(in      ) ^ rk(0);
s1 = GETU32(in + 4) ^ rk(1);
s2 = GETU32(in + 8) ^ rk(2);
s3 = GETU32(in + 12) ^ rk(3);
t0 = Te0[s0>>24] ^ Te1[(s1>>16)&0xff] ^ Te2[(s2>>8)&0xff] ^ Te3[s3&0xff] ^ rk(4)

• e.g., AES table lookup



Defenses for data cache

• Secure cache design
• Target contention based attacks
• Partitioning the cache

• Eliminate cache contention
• Static partitioning or dynamic partitioning
• Performance degradation due to cache 

underutilization

• Randomizing the memory-to-cache mapping
• Allow cache contention
• No information can be extracted
• Negligible performance degradation

5



Newcache

• Random-Fixed mapping

6

memory LDM cache Physical cache

a

dynamic random
mapping 

fixed direct
mapping

b



Can Newcache-like randomized 
mapping defeat contention based 

attacks against I-cache?

7



Instruction cache attacks

• Secret-dependent instruction paths
• Public-key cryptography

• Applications processing secret information, e.g., 
password, credit card information

8

if (secret == 1) {
code block 1;

} else {
code block 2;

}



Prime-Probe Attacks

Memory Cache

Victim’s memoryAttacker’s memory

Cache Cache



Construct Prime-Probe attacks on 
I-cache

10



Prime-Probe attacks on modular 
exponentiation

11

• Implementation of modular exponentiation
• Basic “square and multiply” algorithm

• Exponent bits scanned from MSB to LSB (left to right)

Let k = bitsize of d

Let s = m

For i = k-2 down to 0

Let s = s*s (SQUARE)
Let s = s mod n (REDUCE)

If (bit i of d) is 1 then
Let s = s*m (MULTIPLY)
Let s = s mod n (REDUCE)

End if

End for



Cache footprint and 
SVM classification matrix

12

Classification Classification 
AccuracySquare Multiply Reduce

Op: Square 3470 (0.87) 189 (0.05) 332 (0.08)
90.2%Op: Multiply 375 (0.09) 3587 (0.90) 38 (0.01)

Op: Reduce 92 (0.02) 148 (0.04) 3760 (0.94)



Effectiveness of randomized 
mapping on I-cache
• Characterizing methodology

• Perform Prime-Probe attacks on gem5 simulator

• To achieve fine-grained preemption and Prime-Probe 
operations
• Hack simulator to execute dummy memory accesses for the 

probe operations at some fixed time interval

• Use SVM classification matrix as a metric

• Accuracy -> 33%, cannot distinguish S, M, R operations 

13



Cache foot print with Random-
Fixed mapping

14

• Varying size of logical direct mapped (LDM) cache

• 1X Cache size

• 4X Cache size

• 16X Cache size



SVM classification matrix for 
Random-Fixed mapping

15

Square Multiply Reduce accuracy

1X cache size Square 3978 (0.99) 0 (0.00) 22 (0.01) 98.7%

Multiply 1 (0.00) 3983 (1.00) 17 (0.00)

Reduce 10 (0.00) 107 (0.03) 3883 (0.97)

4X cache size Square 3840 (0.96) 5 (0.00) 155 (0.04) 96.4%

Multiply 5 (0.00) 3850 (0.96) 145 (0.04)

Reduce 62 (0.02) 61 (0.02) 3877 (0.97)

16X cache size Square 1143 (0.29) 940 (0.24) 1917 (0.47) 41.0%

Multiply 1153 (0.29) 1098 (0.27) 1748 (0.44)

Reduce 696 (0.17) 620 (0.16) 2684 (0.67)



Summary of results

• Random-Fixed mapping
• Provides a different spectrum of cache designs ranging 

from direct mapped cache to fully associative cache
• LDM size = 1X cache size: direct mapped cache

• all fixed mapping

• Still vulnerable to Prime-Probe attacks

• LDM size = memory size: fully associative cache
• all randomized mapping

• Completely defeats Prime-Probe attacks

• Increasing LDM cache size reduces the probability of the 
index conflicts, and hence increases the difficulty of 
attacks

16



Holistic hardware implementation

17

[=Indexi?]

Data array

Cache line

ADDR

Line offsetindextag

=?

Tag array

hit

tag

n+k

SRAM CAM SRAM

LNreg

• Replace address decoder of conventional cache with CAM

0

2n-1

k = extra index bits



Power and latency

18

• Hierarchical NAND-CAM
• Consume much less power than NOR-CAM

• Implemented the whole cache using 65nm CMOS 
process
• Slightly faster than the 8-way set associative cache
• Slightly less power



System performance

19

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

N
o

rm
al

iz
e

d
 M

P
K

I

k=3 k=4 k=5 k=6

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

102.00%

N
o

rm
al

iz
e

d
 IP

C

k=3 k=4 k=5 k=6

• Workloads are chosen to have large working sets (stress 
instruction cache)

• Overall performance degradation is less than 0.3%



Conclusions 

• Ideal randomized mapping can completely defeat 
contention based attacks

• Random-Fixed mapping provides full design 
spectrum from direct-mapped cache to fully 
associative cache

• Increasing the size of the LDM (or the number of 
extra index bits k ) increases the difficulty of attacks

• Newcache replacement for both the I-cache and D-
cache in processors will prevent cache side channel 
attacks without degrading either system 
performance or cache physical performance

20



Thank You!

Q&A

21


