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Cache side channel attacks

* Information leakage by exploiting timing difference
between cache hit and cache miss

* The cache is a shared resource
* Cache state affects, and is affected by all processes
 Cache contention

* Cryptanalysis through cache address leakage
* No disclosure of data stored in the cache

* The “metadata” leaks information about memory
access patterns
* Which addresses are being accessed
* Memory access patterns depend on the secret key
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Data cache attacks

* Secret dependent memory indexing
* e.g., AES table lookup

sO = GETU32(in ) ~ rk(0);

s1 = GETU32(in + 4) A rk(1);

s2 = GETU32(in + 8) A rk(2);

s3 = GETU32(in + 12) A rk(3);

t0 = Te0[s0>>24] A Tel[(s1>>16)&0xff] A Te2[(s2>>8)&O0xff] A Te3[s3&0xff] / rk(4)
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Defenses for data cache

* Secure cache design
* Target contention based attacks

* Partitioning the cache
* Eliminate cache contention
e Static partitioning or dynamic partitioning

e Performance degradation due to cache
underutilization

* Randomizing the memory-to-cache mapping
e Allow cache contention
* No information can be extracted
* Negligible performance degradation
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Newcache

 Random-Fixed mapping
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Can Newcache-like randomized
mapping defeat contention based
attacks against |-cache?
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Instruction cache attacks

* Secret-dependent instruction paths
* Public-key cryptography

* Applications processing secret information, e.g.,
password, credit card information

if (secret ==1) {
code block 1;

} else {
code block 2;

}
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Prime-Probe Attacks
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Construct Prime-Probe attacks on

Instruction Cache

I-cache
Memory Chunk
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Prime-Probe attacks on modular
exponentiation

* Implementation of modular exponentiation

* Basic “square and multiply” algorithm
e Exponent bits scanned from MSB to LSB (left to right)
Let k = bitsize of d

Lets =m
Fori=k-2 downto O

Let s = s*s (SQUARE)
Let s = s mod n (REDUCE)

If (bitiof d)is 1 then
Let s = s*m (MULTIPLY)
Let s = s mod n (REDUCE)
End if
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Cache footprint and
SVM classification matrix
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Cache sets
Classification Classification
Square Multiply Reduce Accuracy
Op: Square 3470 (0.87) 189 (0.05) 332 (0.08)
Op: Multiply | 375 (0.09) 3587 (0.90) 38 (0.01) 90.2%
Op: Reduce 92 (0.02) 148 (0.04) 3760 (0.94)
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Effectiveness of randomized
mapping on I-cache

* Characterizing methodology
* Perform Prime-Probe attacks on gem5 simulator

* To achieve fine-grained preemption and Prime-Probe
operations

e Hack simulator to execute dummy memory accesses for the
probe operations at some fixed time interval

e Use SVM classification matrix as a metric
e Accuracy -> 33%, cannot distinguish S, M, R operations
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Cache foot print with Random-
Fixed mapping

* Varying size of logical direct mapped (LDM) cache
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SVM classification matrix for

Random-Fixed mapping

Square Multiply Reduce accuracy
1X cache size | Square 3978 (0.99) 0 (0.00) 22 (0.01) 98.7%
Multiply 1 (0.00) 3983 (1.00) |17 (0.00)
Reduce 10 (0.00) 107 (0.03) 3883 (0.97)
4X cache size | Square 3840 (0.96) 5 (0.00) 155 (0.04) 96.4%
Multiply 5 (0.00) 3850 (0.96) | 145 (0.04)
Reduce 62 (0.02) 61 (0.02) 3877 (0.97)
16X cache size | Square 1143 (0.29) 940 (0.24) 1917 (0.47) 41.0%
Multiply 1153 (0.29) 1098 (0.27) | 1748 (0.44)
Reduce 696 (0.17) 620 (0.16) 2684 (0.67)
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Summary of results

 Random-Fixed mapping

* Provides a different spectrum of cache designs ranging
from direct mapped cache to fully associative cache
* LDM size = 1X cache size: direct mapped cache

* all fixed mapping
e Still vulnerable to Prime-Probe attacks

e LDM size = memory size: fully associative cache

 all randomized mapping
* Completely defeats Prime-Probe attacks

* Increasing LDM cache size reduces the probability of the

index conflicts, and hence increases the difficulty of
attacks
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Holistic hardware implementation

* Replace address decoder of conventional cache with CAM

ADDR
tag index Line offset
\_
n+k
Tag array Data array
0
LNreg
tag [€ [=Index?] > Cachedline
SRAM CAM SRAM
. 2"-1
—)é—} hit

k = extra index bits
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Power and latency

e Hierarchical NAND-CAM

* Consume much less power than NOR-CAM
* Implemented the whole cache using 65nm CMQOS
process

» Slightly faster than the 8-way set associative cache
* Slightly less power
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Normalized MPKI

System performance
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* Workloads are chosen to have large working sets (stress

instruction cache)

* Overall performance degradation is less than 0.3%
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Conclusions

* |deal randomized mapping can completely defeat
contention based attacks

* Random-Fixed mapping provides full design
spectrum from direct-mapped cache to fully
associative cache

* Increasing the size of the LDM (or the number of
extra index bits k ) increases the difficulty of attacks

* Newcache replacement for both the I-cache and D-
cache in processors will prevent cache side channel
attacks without degrading either system
performance or cache physical performance
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