Covert Channels Through Branch Predictors: a Feasibility Study

Dmitry Evtyushkin¹

Dmitry Ponomarev¹

Nael Abu-Ghazaleh²

¹State University of New York at Binghamton Department of Computer Science ²University of California at Riverside Department of Computer Science & Engineering

Hardware and Architectural Support for Security and Privacy (HASP)

June 14, 2015 Portland, OR, USA in conjunction with ISCA 2015

- •What is covert channel? How can it be used?
- •Architectural covert channels
- •Branch Predictor in CPU
- •Constructing covert channel through Branch Predictor
- •Results
- •Optimizations
- •Conclusion

Covert Channels

Covert Channels

Transfer information through channels not intended for information transfer

SUNY Binghamton / UC Riverside

Covert Channel Usage Example

SUNY Binghamton / UC Riverside

Covert Channel Usage Example

Shared resources can be used to construct covert channels:

- •OS resources
 - File descriptors, free space, etc.
- •Network latencies
- •Power and Thermal effects
- Architectural resources
 - Caches
 - Functional units
 - Branch predictor
 - Other resources

•Others

Contention-based Architectural Covert Channels 7 *mul* %*r*1,%*r*1 *mul %r1,%r1* mul %r1,%r1 *mul %r1,%r1 mul* %*r*1,%*r*1 *mul %r1,%r1* mul %r1,%r1 *mul %r1,%r1* Q Tro Spy 6 **Multiplication Units** CPI

SUNY Binghamton / UC Riverside

Properties that make covert channel possible:

- •During execution branch predictor accumulates state
- •BP is shared among all processes on core
- •BP is not flushed on context switches
- •Parallel threads in SMT share same BP
- •Branch mispredictions have high cost

SUNY Binghamton / UC Riverside

Constructing Covert Channel

Scheduling Trojan and Spy

Single Threaded Scenario:

Setting affinity mask to run **Qujan**tand Spy on the same core

Thread 0

Multi Threaded Scenario (SMT):

Setting affinity mask to run **T@jæmta**d **Spy** on parallel virtual cores

SUNY Binghamton / UC Riverside

Branch Code

Notes:

•Trojan and Spy execute large number of branch instructions

- 500K for Trojan
- 30K for Spy
- •Trojan and Spy execute the similar code

•Nop instructions to randomize layout

- •Real hardware
- •Intel Core i7-4800MQ CPU (Haswell)
- •Ubuntu 14.04.2 generic Linux kernel version 3.16.0-31

Single Thread, no interference:

Signal vs Noise

Single Thread, no interference, *cpuburn* as noise:

- •High SNR
- •Stable signal
- •Possibly high capacity
- •Asynchronous signal

SMT Results

SUNY Binghamton / UC Riverside

Realistic example

Single Thread, Browser with YouTube as noise/interference

SUNY Binghamton / UC Riverside

- •What we present is only a **prototype**
- •Can transmit multiple bits at once
- •Can make scheduling faster

•For more accuracy, can reverse-engineer BP to find optimal number of branch instructions/nops

- •Branch predictor can be used as an effective covert channel media
- •Covert channel through BP has desirable properties
- •It should be considered when implementing secure systems free of covert and side channels

Thank you!

SUNY Binghamton / UC Riverside

HASP 2015

20