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Introduction

e Side-channel analysis exploits physical leakage of the
cryptographic device

e |t has two main components, leakage modeling and
distinguisher

e More research efforts have been focused on distinguisher

o Leakage is mainly modeled with Hamming weight, Hamming
distance, bitwise, etc
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Side-Channel Analysis

e Side-channel analysis can be mainly classified into profiling
and non-profiling based attacks

o In non-profiling attacks, the attacker tries to exploit statistical
dependency (i.e., Correlation Power Analysis, Mutual
Information Analysis)

o In profiling attacks, the attacker's goal is to characterize the
device (i.e., Template Attacks, Stochastic Approach)
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Background

e The side-channel leakage can be mainly decomposed into the
deterministic part and the randomized part

e Given the plaintext (z) and the key (k), the leakage for
intermediate value IV, ;, = f(z, k) is given by:

T g = L(f (2, k) + ¢,

e [ is the leakage function that maps the intermediate value to
its side-channel leakage T} ;; and € is the (assumed) mean free
Gaussian noise (¢ ~ N(0,0?))
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Profiling Based Attacks

e These attacks are considered as the strongest attacks

e However, this is based on the assumption that the profile is
built correctly

e It could be either by classification (i.e., TA) or by regression
(i.e., SA)
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Classical Profiling Attack

e Template Attacks (TA)

e A template is constructed for each intermediate value
e The template consists of the pair (1, %)

e Stochastic Approach (SA)

e The deterministic part of the leakage is determined using linear
regression based on the subspace representation of the
intermediate value

e Different subspace are for example: F5 which uses HW or HD,
Fy which is bitwise representation, and Fb56 which is similar to
generic template model

e Only one noise covariance matrix is used
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Machine Learning in Side-Channel Analysis

Machine learning has been adopted for profiling attacks

It is used mainly for a leakage characterization or a
distinguisher

Previous works have shown some promising results

Commonly used learning algorithms include Support Vector
Machine (SVM) and Random Forest (RF)
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Support Vector Machine

e SVM have been compared with TA under different attack
scenarios

e It is shown to be more robust against noise and requires less
attack traces

e It is used for classification, based on separating hyperplane

e |t uses soft margin to deal with non-separable data and kernel
trick to deal with non-linearity issue
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Support Vector Machine

(a) SVM on original data (b) Mapping to higher dimension

Figure : How SVM performs linear classification on non-linear data, by

mapping it to higher dimension space.
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Support Vector Machine

e ¢(t): transformation into higher dimension, might be
impractical
e Primal form

arg min o |\w||2+0251 stoci((w, @(t)) +0) > 1 - &
b,€

=1
o K(ti,t;) = (¢(t:), o(t;)), can be expressed as
Kernel name Kernel function
Linear K(ti, tj) = tith
Radial basis function K (t;,t;) = exp(y||t: — t;]|?)
Polynomial K(ti,tj) = (t; - t;)?

e Dual form

arg r>noax g o — E ajopcic K (5, tr),
;> - -
J,k
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Support Vector Regression

e The concept is based on support vectors like in SVM, but uses
them for soft margins in the regression process instead of
classification

e Additional parameter, ¢, is required, to compute the loss
function
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Support Vector Regression

The problem in SVR is to determine L(a@) = (w0, #(@)) + b, where
|L(@) — t| < e, which could be formulated as:

argmm *HwIIQ + CZ (& + &)

=1

subject to:
<u7,¢( z)>+b—t >€+€z
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Support Vector Regression
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Figure : SVR on non-linear data, the dash line indicates the ¢ tube
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Support Vector Regression

e The method is done in similar manner like SA

e Replace the linear regression with SVR during the model
building process to describe the deterministic part of the
leakage

e To deal with parameter tuning, the heuristic method from
Cherassky and Mat is used

1
V. Cherkassky and Y. Ma. Practical selection of SVM parameters and noise estimation for SVM u( HNOLOGICAL
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Experiments

e The experiment was done on forward AES implementation
running on a standard 8-Bit ;C implementation

e Exploit the power side-channel leakage from the first round
Sbox output

e This is the most common target for SCA, due to its non-linear
property.
o Guessing entropy is used as comparison metric
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Evaluating the Quality of Leakage Modeling Using
CPA

e To compare the quality of the model, Correlation Power
Analysis (CPA) is used

e A set of 50000 traces from AES implementation are used

e The traces are used to estimate model using SA with Fy

(basic), denoted SA9 as well as Fbss (maximum), denoted
SA256, compared with SVR
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Evaluating the Quality of Leakage Modeling Using
CPA
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Figure : CPA of different leakage model
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Evaluation of Attack on Noisy Traces

e The noise was simulated by adding white Gaussian noise to
the captured power traces

e Using 50K power traces, additional sets with an artificial noise
margins generated with standard deviation o of the uC power
traces: 2.5 0 (SNR 30 dB) and 8 ¢ (SNR 20 dB)

e Fix training set 40K and the remaining 10K was used for the
evaluation of the attack
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Evaluation of Attack on Noisy Traces
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Figure : Guessing entropy for different noise level
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Evaluation of Attack on Different Subspaces

Investigate inter-bit dependent leakage

The experiment for SA is done using different subspaces (SAi
uses F; subspace)

For SVR, only 8-bit dimensional model is used

The experiments are done using original traces and simulated
traces
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Evaluation of Attack on Different Subspaces
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Evaluation of Attack on Different Subspaces
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Discussion

e The kernel trick of SVR can be used to generalize the leakage
model

e When the noise level is low, SVR could perform better than
SA with lower subspace, and approach the performance of
SA256

e When moderate level of noise is present, the performance of
SVR based profiling attacks is comparable with SA

e However, there could be a possibility of overfitting when the
noise level is high

% u( HNOLOGICAL
/ UNIVERSITY

D. Jap, M. Stéttinger and S.Bhasin Leakage Modeling with Support Vector Regression 26 / 28



s P2CE
Conclusion

e We applied new machine learning based method for profiling
based attacks

e The proposed method can construct good leakage model

o In the future, we will investigate the effectiveness on different
platforms
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Thank you!

Any questions?
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