

Hardware Overhead Analysis of Programmability in ARX Crypto Processing

Mohamed El-Hadedy Aly, Kevin Skadron Department of Computer Science University of Virginia June 14, 2015

- Goal: Efficient and flexible crypto processing
 - ARX: Basis for many crypto algorithms (SHA, AES, etc.)
 - Crypto operations increasingly common
 - Power, performance benefits from specialization
- Outline
 - ARX Programmable Processing Element
 - Custom ARX for Pi-Cipher
 - Comparison
 - Conclusion

Arithmetic and Logic Unit

	Arithm						
Acc			Modes	<i>6</i>	Opera	ations	Operation
Inst (6)	Inst (5)	Inst (4)	Inst (3)	Inst (2)	Inst (1)	Inst (0)	92.
Reset the a		1	1	1	0	0	XOR (ALU 64 bits)
	Accumulate	1	1	1	0	1	ADD (ALU 64 bits)
		1	1	1	1	0	INC (ALU 64 bits)
		1	1	1	1	1	SUB (ALU 64 bits)
		0	0	0	0	0	XOR (ALU 32 bits)
		0	0	0	0	1	ADD (ALU 32 bits)
		0	0	0	1	0	INC (ALU 32 bits)
		0	0	0	1	1	SUB (ALU 32 bits)
ccu		1	0	1	0	0	XOR (ALU 16 bits)
mu		1	0	1	0	1	ADD (ALU 16 bits)
ilator		1	0	1	1	0	INC (ALU 16 bits)
		1	0	1	1	1	SUB (ALU 16 bits)
		0	1	1	0	0	XOR (ALU 48 bits)
		0	1	1	0	1	ADD (ALU 48 bits)
		0	1	1	1	0	INC (ALU 48bits)
		0	1	1	1	1	SUB (ALU 48 bits)

ARX Programmable Processing Element

Flexible & Simple

Rotator

Operation	Mode	RC3	RC2	RC1	RC0	Data width
ROR $(1 \rightarrow 15)$	00001010101	1 → F	1 → F	1→F	1 → F	
ROR (16 \rightarrow 31)	01101010101	1 → F	1 → F	1→F	1 → F	64]
ROR (16 \rightarrow 31)	01101010101	1 → F	1→F	1→F	1 → F	Bits
ROR $(32 \rightarrow 47)$	10001010101	1 → F	1→F	1→F	1 → F	Mo
ROR (48 → 63)	11101010101	1 → F	1→F	1→F	1→F	de
$\begin{array}{c} \text{ROR} (1 \rightarrow 15) \\ \text{ROR} (1 \rightarrow 15) \end{array}$	00011011101	1→F	1→F	1 → F	1→F	32 M
$\begin{array}{c} \text{ROR} (16 \rightarrow 31) \\ \text{ROR} (16 \rightarrow 31) \end{array}$	01111011101	1→F	1 → F	1→F	1→F	Bits ode
ROR $(1 \rightarrow 15)$ ROR $(1 \rightarrow 15)$ ROR $(1 \rightarrow 15)$ ROR $(1 \rightarrow 15)$ ROR $(1 \rightarrow 15)$	00000000000	1→F	1→F	1 → F	1→F	16 Bits Mode

ARX Programmable Processing Element

Processing Element

- Dual-ported instruction memory allows:
 - A new program to be loaded while the current program progresses
 - Or an early start on a new program while the rest of the program is still loading Or seamless processing of a program that cannot entirely fit into the on-chip memory.

Processing Element

Instruction RAM

Custom ARX Implementation of Pi-Cipher

- Single Width ARX
- Double-Width ARX
- Quad-width ARX

* operation for 64–bit words

Input: $\mathbf{X} = (X_0, X_1, X_2, X_3)$ and $\mathbf{Y} = (Y_0, Y_1, Y_2, Y_3)$ where X_i and Y_i are 64-bit variables. **Output:** $\mathbf{Z} = (Z_0, Z_1, Z_2, Z_3)$ where Z_i are 64-bit variables. **Temporary 64-bit variables:** T_0, \ldots, T_{11} .

 μ -transformation for X:

1.	$T_0 \\ T_1 \\ T_2 \\ T_3$	1 1 1 1	RC RO RO RO	TL^7 TL^1 TL^3 TL^5	(0xl ⁹ (0x ¹ (0x ³ (0x	70E8 D1C0 B4B2 A390	8E4E2 CCAC9 2B1AC C9A99	E1D8 9C6C CAAA 9969	3D4D2 5C3B8 9A6A5 5938E	+++++++++++++++++++++++++++++++++++++++	$\begin{array}{c} X_0 \\ X_0 \\ X_0 \\ X_1 \end{array}$	+ + +	$\begin{array}{c} X_1 \\ X_1 \\ X_2 \\ X_2 \end{array}$	+++++	$egin{array}{c} X_2); \ X_3); \ X_3); \ X_3); \ X_3); \end{array}$
2.	$T_4 \\ T_5 \\ T_6 \\ T_7$	1111	$T_0 \\ T_0 \\ T_1 \\ T_0$	$\oplus \oplus \oplus \oplus$	$T_1 \\ T_1 \\ T_2 \\ T_2 \\ T_2$	$\oplus \oplus \oplus \oplus$	$T_3; T_2; T_3; T_3; T_3;$								
v-tra	nsfor	mat	ion	for J	<i>(</i> :										
1.	$T_0 \\ T_1 \\ T_2 \\ T_3$	1 1 1 1	RO RO RO RO	${TL^{1}\over TL^{2}} {TL^{3}\over TL^{5}}$	${}^{1}(0x)$ ${}^{3}(0x)$ ${}^{7}(0x)$ ${}^{9}(0x)$	8D81 6A69 5659 3A39	38778 96665 5534E 93635	3747 5635 54D4 5332	2716C C5A59 B473C E2D2B	+ + + +	$Y_0 \\ Y_1 \\ Y_0 \\ Y_0$	+ + + +	$Y_2 \\ Y_2 \\ Y_1 \\ Y_1 \\ Y_1$	++++++	$egin{array}{l} Y_3); \ Y_3); \ Y_2); \ Y_3); \end{array}$
2.	$T_8 \\ T_9 \\ T_{10} \\ T_{11}$	1 1 1 1 1	$T_1 \\ T_0 \\ T_0 \\ T_0$	$\oplus \oplus \oplus \oplus$	$T_2 \\ T_2 \\ T_1 \\ T_1 \\ T_1$	$\oplus \oplus \oplus \oplus$	$T_3; T_3; T_3; T_3; T_2;$								
τ -transformation for both $\mu(X)$ and $\nu(Y)$:															
1.	$\begin{array}{c} Z_3\\ Z_0\\ Z_1\\ Z_2 \end{array}$	† † † †	$T_4 \\ T_5 \\ T_6 \\ T_7$	++++++	$T_8; T_9; T_{10}; T_{11}; T_$										

Custom, Quad ARX Implementation

VERS,

Implementations & Comparison

	PPE	Single Width	Double Width	Quad Width
Throughput	1.20 Gbps	3.57 Gbps	3.68 Gbps	4.34 Gbps
Area (Slices)	227	132	154	266
Frequency (MHz)	250	371	324	347
Throughput/Area (Mbps/slice)	5.4	27.7	24.5	16.7

ARX Performance (16-Wide Pi-Cipher) Xilinx Virtex 7 FPGA

Implementations & Comparison

	PPE	Single Width	Double Width	Quad Width
Throughput	1.17 Gbps	3.09 Gbps	3.68 Gbps	4.22Gbps
Area (Slices)	227	445	447	634
Frequency (MHz)	250	254	243	245
Throughput/Area (Mbps/slice)	5.3	7.1	8.4	6.8

ARX Performance (64-Wide Pi-Cipher) Xilinx Virtex 7 FPGA

Performance

PPE

- Pros: It is a programmable element which can be used to implement different algorithms based on the ARX paradigm
- □ **Pros:** It can support different word sizes
- □ **Pros**: Duplicating the PPE can achieve 75% of the 64-bit custom core's throughput, but with greater flexibility

Performance

PPE

Cons: The custom hardware implementations are much more efficient than the PPE (Area & Performance)

Cons: The PPE design we have so far is handicapped because it uses a native 64-bit ALU, which we suspect lowers the achievable frequency by increasing the critical path

Future Work

Further improve efficiency of the PPE

Implement more algorithms with the PPE & benchmark against custom hardware

Thank you Q&A