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Motivation
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Side-Channel Attacks

e Algorithm implementations may
inadvertently leak information through

different sources Faulty
Outputs

* These sources are called “side-channels”

* A side-channel attack exploits one or more of
these to learn secret information
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Masking Countermeasure

e Countermeasures such as masking have been developed to thwart
side-channel attacks

* Masking tries to remove the correlation between the power
consumption and the data that is being handled

Boolean Masking

xr=d®xk xim =d® kD m

d : plaintext, k : secret key, m : uniformly distributed random
mask



Advanced Encryption Standard (AES)

PLAINTEXT
 Plaintext/ciphertext: 128 bits
* Key: 128/192/256 bits AddRoundKey
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Rotating S-Box Masking (RSM)
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Maxime Nassar, Youssef Souissi, Sylvain Guilley, Jean-Luc Danger. RSM: a Small and Fast Countermeasure for AES, Secure against 1st and 2nd-order Zero-Offset SCAs, DATE’12



Mask Recovery Attack

* A 15t order CPA attack fails to recover the key after 100,000 traces

* Prior work: non-uniform distribution of the masks after an XOR (174),
collision attacks (1100), 2"9-order CPA (300),

e Qur attack : 10 traces
T

* Masks are deployed in a e Launch a 15t order horizontal
predictable sequence CPA attack to recover the
masks
 The device leaks the Hamming
Weight of the masks each e Recover the masks, then
time they are handled recover the key

Moradi, A., Guilley, S., Heuser, A., “Detecting Hidden Leakages”, ACNS’14
Kutzner, S., Poschmann, A., “On the Security of RSM — Presenting 5 First and Second-order Attacks”, COSADE’14
Belgarric, P., Bhasin, S., Bruneau, N., Danger, J.L., Debande, N., Guilley, S., Heuser, A., Najm, Z., Rioul, O., “Time-Frequency Analysis for §econd—

Order Attacks”, CARDIS 14



1st order CPA Attack

Hypothetical Power Model Measured Power Traces
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Vlask Recovery — Vvhen does masking take
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NICV=Var(E[T[X ])/Var(T)
W : window when masking is suspected to occur

NICV : Normalized Inter-class Variance
T : power traces

X : plaintext byte



Vlask Recovery — Vvhen does masking take
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Mask Recovery Results S
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2nd_order CPA Attack
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Comparison with 2"9-Order Attack"

Key Bytes Recovered : SNR = 2.689
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T : power traces, X : plaintext byte

*S. Bhasin, J-L Danger, S. Guilley, and Z. Najm, “Side-Channel Leakage and Trace Compression using

*5'/[//17= ]_/]_//V/C'V—]_ = Var([E[T/X])/Var(T) — Normalized Inter-Class Variance”, HASP’14

AE. Prouff, M. Rivain, and R. Bevan. Statistical analysis of second order differential power analysis.

VHF(E[T/X]) IEEE Trans. on Computers’09 3



Adding Noise to the Power Traces
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*SNR=1/1/NICV -1 = Var(E[T|X])/Var(T) — T : power traces, X : plaintext byte
*S. Bhasin, J-L Danger, S. Guilley, and Z. Najm, “Side-Channel Leakage and Trace Compression using
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Conclusion

 Our attack outperforms a 2"¢-order attack by two orders of
magnitude w.r.t to number of traces needed to recover the key

* A 2"-order attack fails to recover the key for SNR < 0.289, while our
attack succeeds for SNR < 0.035

* The implementation leaks the Hamming Weight of the masks as they
are fetched from memory

* The predictable deployment order of the masks and Hamming
Weight variation allow an attacker to recover the mask offset

* We also analyzed the relationship between mask recovery success
rate and window width/number of masks attacked
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