Exploiting Small Leakages in Masks to Turn a Second-Order Attack into a First-Order Attack

Alexander DeTrano

Sylvain Guilley

Xiaofei Guo

Naghmeh Karimi

Ramesh Karri

Motivation

Side-Channel Attacks

- Algorithm implementations may inadvertently leak information through different sources
- These sources are called "side-channels"
- A side-channel attack exploits one or more of these to learn secret information

Masking Countermeasure

- Countermeasures such as masking have been developed to thwart side-channel attacks
- Masking tries to remove the correlation between the power consumption and the data that is being handled

Boolean Masking

d : plaintext, k : secret key, m : uniformly distributed random mask

Advanced Encryption Standard (AES)

Plaintext/ciphertext: 128 bits

• Key: 128/192/**256** bits

• 13 rounds + 1 pre-round

AddRoundKey	XOR operation
SubBytes	Look-up table
ShiftRows	Byte-wise permutation
MixColumns	Matrix multiplication

Rotating S-Box Masking (RSM)

- Carefully chosen masks reduces storage requirements
 - RSM uses 16 masks
- HW: 2nd-order zero-offset resistance
- EM traces publicly from DPA Contest v4
 - AES256-RSM implemented on a smartcard with 8-bit microcontroller Atmel ATMega-163

Mask Recovery Attack

- A 1st order CPA attack fails to recover the key after 100,000 traces
- Prior work: non-uniform distribution of the masks after an XOR (174), collision attacks (1100), 2nd-order CPA (300),
- Our attack : 10 traces

Observation

- Masks are deployed in a predictable sequence
- The device leaks the Hamming Weight of the masks each time they are handled

Idea

- Launch a 1st order horizontal CPA attack to recover the masks
- Recover the masks, then recover the key

1st order CPA Attack

Mask Recovery – When does masking take place?

 $NICV = Var(\mathbb{E}[T|X])/Var(T)$

W: window when masking is suspected to occur

NICV: Normalized Inter-class Variance

T : power traces

X : plaintext byte

Mask Recovery – When does masking take

Mask Recovery Results

Mask Recovery Success Rate

 $\sum_{0.5}$

 $x \, 10^4$

2nd-order CPA Attack

Hypothetical Power Model

 $HW(\blacksquare \blacksquare \blacksquare \blacksquare m0 \ m11 : \& \blacksquare m1m2 : \& \blacksquare \blacksquare m2m3 : \& \blacksquare \blacksquare \dots : \& \blacksquare$

Measured Power Traces ?m15&m0&· time Apply combination function Pre-processed Traces 1st order CPA

Correlation

Comparison with 2nd-Order Attack[^]

T : power traces, X : plaintext byte

^{*} $SNR = 1/1/NICV - 1 = Var(\mathbb{E}[T|X])/Var(T) - Var(\mathbb{E}[T|X])$

^{*}S. Bhasin, J-L Danger, S. Guilley, and Z. Najm, "Side-Channel Leakage and Trace Compression using Normalized Inter-Class Variance", HASP'14

[^]E. Prouff, M. Rivain, and R. Bevan. Statistical analysis of second order differential power analysis. IEEE Trans. on Computers'09

Adding Noise to the Power Traces

^{*} $SNR = 1/1/NICV - 1 = Var(\mathbb{E}[T|X])/Var(T) - Var(\mathbb{E}[T|X])$

T : power traces, X : plaintext byte

^{*}S. Bhasin, J-L Danger, S. Guilley, and Z. Najm, "Side-Channel Leakage and Trace Compression using Normalized Inter-Class Variance", HASP'14

Conclusion

- Our attack outperforms a 2nd-order attack by two orders of magnitude w.r.t to number of traces needed to recover the key
- A 2^{nd} -order attack fails to recover the key for SNR < 0.289, while our attack succeeds for SNR \leq 0.035
- The implementation leaks the Hamming Weight of the masks as they are fetched from memory
- The predictable deployment order of the masks and Hamming Weight variation allow an attacker to recover the mask offset
- We also analyzed the relationship between mask recovery success rate and window width/number of masks attacked

Thank you!

Questions?