TELECOM
ParisTech

mHE
Institut

Institut_ seom Performance Optimizations

of Integrity Checking based
on Merkle Trees

<ouaarab@enst.fr>

I Table of contents

Introduction

Merkle Trees Management
Merkle Tree Caches
Experiments and Results

Conclusion

Performance Optimizations of Integrity Checking based on Merkle Trees 2/19

B rian

Introduction

Performance Optimizations of Integrity Checking based on Merkle Trees 3/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium
is frequently one of the weakest points on the security point of view

Performance Optimizations of Integrity Checking based on Merkle Trees 4/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium
is frequently one of the weakest points on the security point of view

B Many field are concerned like cloud computing, database and embedded
systems

Performance Optimizations of Integrity Checking based on Merkle Trees 4/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium
is frequently one of the weakest points on the security point of view

B Many field are concerned like cloud computing, database and embedded
systems

External 3
Memory '
(Untrusted)

Performance Optimizations of Integrity Checking based on Merkle Trees 4/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium

is frequently one of the weakest points on the security point of view
B Many field are concerned like cloud computing, database and embedded

systems

(Trusted)

iﬂ-

External
Memory
(Unlmsled)

B The most difficult attack to counter is replay attack

S. OUAARAB

Replay attack
T=t0
H M @4 data_x
Cc @3 data_x
@2 data_x
@ data_x
Unirusted arca @0 data_x

Performance Optimizations of Integrity Checking based on Merkle Trees

4/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium
is frequently one of the weakest points on the security point of view

B Many field are concerned like cloud computing, database and embedded

systems

(Trusted)

iﬂ-

External
Memory
(Unlmsled)

B The most difficult attack to counter is replay attack

S. OUAARAB

' ' M write (@3, data_3)

Replay attack
T=t1
@4 data_x
@3 data_3
@2 data_x
@ data_x
Unirusted arca @0 data_x

Performance Optimizations of Integrity Checking based on Merkle Trees

4/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium

is frequently one of the weakest points on the security point of view

B Many field are concerned like cloud computing, database and embedded

systems

(Trusted)

iﬂ-

External
Memory
(Unlmsled)

B The most difficult attack to counter is replay attack

S. OUAARAB

G

i

Replay attack
T=t1
H M @4 data_x
c @] data3
@2 data_x
@ data_x
Unirusted arca @0 data_x

Performance Optimizations of Integrity Checking based on Merkle Trees

4/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium
is frequently one of the weakest points on the security point of view

B Many field are concerned like cloud computing, database and embedded

systems

(Trusted)

iﬂ-

External
Memory
(Unlmsled)

B The most difficult attack to counter is replay attack

S. OUAARAB

Replay attack

' ' M write (@3, data_33)

Untrusted area

T=t5
@4 data_4
@3 data_33
@2 data_x
@ data_1
@0 data_0

Performance Optimizations of Integrity Checking based on Merkle Trees

4/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium

is frequently one of the weakest points on the security point of view
B Many field are concerned like cloud computing, database and embedded

systems

(Trusted)

iﬂ-

External
Memory
(Unlmsled)

B The most difficult attack to counter is replay attack

S. OUAARAB

Replay attack
T=t5
H M @| datas
c @3
@2 data_x
@1 data_1
Unirusted arca @0 data_0

Performance Optimizations of Integrity Checking based on Merkle Trees

4/19

I cContext

B The integrity protection of a large data structure stored on an untrusted medium

is frequently one of the weakest points on the security point of view
B Many field are concerned like cloud computing, database and embedded

systems

(Trusted)

iﬂ-

External
Memory
(Unlmsled)

B The most difficult attack to counter is replay attack

S. OUAARAB

Replay attack
T=t7
PRI M || rmies e e
c @3
@2 data_x
data s w33 @1| datat
Untrusted arca @0 data_0

Performance Optimizations of Integrity Checking based on Merkle Trees

4/19

I cContext

B The integrity protection requests the use of one-way function
(hash function or MAC)

H """ ******* e
= 3

w data
,,,,,,,,,,,,,,,,, structure
" chunk

do[d1 | d2{d3

a4

data
block

Performance Optimizations of Integrity Checking based on Merkle Trees 5/19

I cContext

B The integrity protection requests the use of one-way function

(hash function or MAC)

do[d1 | d2{d3

H I -
o [R —— L T sets
AN
l H
" chunk

‘ ‘ 7777777 _ data

o P 1 o
“ l ‘ structure

data
block

B And a secure storage (to counter the replay attack)

S. OUAARAB

Trusted storage

""" ————————— e
PAANNF YT AN LN

do|

data

,,,,,,,,,, 0
o l “" structure

a2/d3 | ad

data
block

Performance Optimizations of Integrity Checking based on Merkle Trees

5/19

I cContext

B The integrity protection requests the use of one-way function
(hash function or MAC)

H I -
o [R —— L T sets
PR
‘ H

w data
,,,,,,,,,,,,,,,,, structure

do[d1 | d2{d3

a4

data chunk

block

B And a secure storage (to counter the replay attack)

Trusted storage

digest
o B L R meeeeee- Fn sots

PEANIF YNNI AN PN aat
""""" ‘ ‘“"‘ strau:ture

do|

i

@

a3 fd4

data * chunk

block

B But the secure storage is usually small and expensive

Performance Optimizations of Integrity Checking based on Merkle Trees 5/19

N B Merkle Tree

Definition

® Merkle Tree hierarchically organises the reference digests and stores the root in
the secure storage

Trusted storage level #is

Untrusted storage

level #i

n level #2

F F level #1

data structure
level

dn

Performance Optimizations of Integrity Checking based on Merkle Trees 6/19

B rian

Merkle Trees Management

Performance Optimizations of Integrity Checking based on Merkle Trees 7/19

Merkle Tree
Problematic
Issue
Merkle tree leads to significant storage and performance overheads:
B initialization: based on iterative function

B Integrity Checking / Update: increase the number of untrusted storage
access and digest computations

Performance Optimizations of Integrity Checking based on Merkle Trees 8/19

Merkle Tree
Problematic

Issue
Merkle tree leads to significant storage and performance overheads:
B initialization: based on iterative function

B Integrity Checking / Update: increase the number of untrusted storage
access and digest computations

Optimization

B Initialization: introduce Hollow Merkle tree

B Integrity Checking / Update: use of a customized cache located inside a
secure area.

NULL

®

@
OO,

[fafefafefafeafafafaTalal]

Performance Optimizations of Integrity Checking based on Merkle Trees 8/19

N B Merkle Trees

Initialization

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas T T Two [o7 s oo Tamo] wn] aars[are]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus o T Tas Too Tawl on arzlons] el]

[0 Tor a2 T o+ Tus s [Tas T Tawlwn arzlors el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 9/19

N B Merkle Trees

Initialization

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas T T Two [o7 s oo Tamo] wn] aars[are]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus s [Tas T Tawlwn arzlors el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 9/19

N B Merkle Trees

Initialization

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas T T Two [o7 s oo Tamo] wn] aars[are]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus s [Tas T Tawlwn arzlors el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 9/19

N B Merkle Trees

Initialization

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas T T Two [o7 s oo Tamo] wn] aars[are]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus s [Tas T Tawlwn arzlors el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 9/19

N B Merkle Trees

Initialization

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas T T Two [o7 s oo Tamo] wn] aars[are]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus s [Tas T Tawlwn arzlors el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 9/19

N B Merkle Trees

Initialization

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas T T Two [o7 s oo Tamo] wn] aars[are]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus s [Tas T Tawlwn arzlors el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 9/19

N B Merkle Trees

Initialization

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas T T Two [o7 s oo Tamo] wn] aars[are]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus s [Tas T Tawlwn arzlors el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 9/19

N B Merkle Trees

Initialization

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas T T Two [o7 s oo Tamo] wn] aars[are]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus s [Tas T Tawlwn arzlors el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 9/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T Tawol wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo Tor T2 T s Tus [as TorJ as Too Tawl on arzlons] el]

[0 Tor a2 T o+ Tus Tas [Tas T Tawol wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T T2 Ts o Tus Tas T [as [0 Tawl on arzfons] il 5]

[0 Tor a2 T o+ Tus Tas [Tas T Tawol wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo Tor T2 T o Tus Tas T [as Too Tawl on arzlons] il 5]

[0 Tor a2 T o+ Tus Tas [Tas T Tawol wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo Tor T2 T o Tus Tas T [as Too Tawl on arzlons] il 5]

[0 Tor a2 T o+ Tus Tas [Tas T Tawol wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B |nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar [z LasT s T Two [7 s oo Tamo[wn] afars[anle]

B Non-Initialized Hollow Merkle
Trees (NI-HMT)

[0 Tar ez s T Tws Tws o7 Tos oo Taro] an] aans[ana]

[0 Tor o2 T o Tus o [Tas Too [awol on arzlons ol o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T Tawol wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T Tawol wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[an] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T Tawol wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B |nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[0 Tar ez [as T T Tws [o7 s oo Torol wn] aafars[an ar3

B Non-Initialized Hollow Merkle
Trees (NI-HMT)

[0 Tar ez s T Tws Tws o7 Tos oo Taro] an] aans[ana]

I 2 N O R T D

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas Too [awl wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T [awlwnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T [awl wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T [awl wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T [awl wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

N B Merkle Trees

Update

B [nitialized Hollow Merkle Trees
(IFHMT)

® Regular Merkle Trees (RMT)

[Tar ez Tas Tas T Tws [o7 s oo Tamo[wn] aars[anle]

® Non-Initialized Hollow Merkle
Trees (NI-HMT)

oo T Tz Ts o Tus Tas T [as Too Tawl on arzfons il]

[0 Tor a2 T o+ Tus Tas [Tas T [awl wnarzlons el o]

Performance Optimizations of Integrity Checking based on Merkle Trees 10/19

B rian

Merkle Tree Caches

Performance Optimizations of Integrity Checking based on Merkle Trees 11/19

I Usec of Cache

B The use of cache decreases the bandwidth with the mass storage and, also
reduces the number of digest computations

B Two particular algorithms are introduced:

e ASAP: the integrity checking ends as soon as we match an intermediate
node into the cache

e ALAP: the update of node into the untrusted storage is delayed as late as
possible storage

Performance Optimizations of Integrity Checking based on Merkle Trees 12/19

I Usec of Cache

B The use of cache decreases the bandwidth with the mass storage and, also
reduces the number of digest computations
B Two particular algorithms are introduced:

e ASAP: the integrity checking ends as soon as we match an intermediate
node into the cache

e ALAP: the update of node into the untrusted storage is delayed as late as
possible storage

Issue

ALAP algorithm causes Merkle tree incoherency between the nodes stored into the
cache and that stored into the untrusted storage

Performance Optimizations of Integrity Checking based on Merkle Trees 12/19

I Usec of Cache

B The use of cache decreases the bandwidth with the mass storage and, also
reduces the number of digest computations

B Two particular algorithms are introduced:

e ASAP: the integrity checking ends as soon as we match an intermediate

node into the cache
e ALAP: the update of node into the untrusted storage is delayed as late as

possible storage

Issue
ALAP algorithm causes Merkle tree incoherency between the nodes stored into the
cache and that stored into the untrusted storage

Cache customisation

Modify the behavior of Write-back policy (i.e. modify READ and WRITE functions of
cache controller and append new functions)

Performance Optimizations of Integrity Checking based on Merkle Trees 12/19

B rian

Experiments and Results

Performance Optimizations of Integrity Checking based on Merkle Trees 13/19

I Case Study: SecBus Project

Purpose
Provide a strong confidentiality and integrity protection against
on-board attacks (including replay attacks)

Qe
8 ‘,&a
T seC { 77777777
| (Trusted)
: = ¢
Fleru || 2
i o External
: C—) '\emory
| = i (Untrusted)
' =R
HE

14/19

Performance Optimizations of Integrity Checking based on Merkle Trees

I |nhitialization

Schemes cycle access MAC
® Memory interconnect latency: 100 CPU clock RMT 4,219,439 29,142 10,885
cycles NI-HMT 101,559 637 372
® DES algorithm latency: 4 CPU clock cycles I-HMT 250,988 21,033 378
m Size of MT and memory page: 4 KB T b| 1 Initiali . .
® Number of random writes: 12.000 a) € 1: Initialization step without
® Merkle Tree (MT) cache: Set associative, cache
64 sets, 8 blocks, 8-byte blocks, LRU,
write-back
Use Of H MT Schemes cycle access MAC
RMT 4,097,234 28,480 10,331
m |-HMT: 22.5 times faster vs RMT NI-HMT 21,975 186 72
X I-HMT 181,646 20,638 47
B NI-HMT: 186.5 times faster vs
RMT

Table 2: Initialization step with
cache

Performance Optimizations of Integrity Checking based on Merkle Trees 15/19

I Random Writes

Schemes cycle access MAC
RMT 102,515,933 684,103 432,000

NI-HMT 102,929,333 688,063 432,264
I-HMT 102,515,933 684,103 432,000

B Memory interconnect latency: 100 CPU clock
cycles

® DES algorithm latency: 4 CPU clock cycles
® Size of MT and memory page: 4 KB . . .
"y pag Table 3: Random writes without cache
® Number of random writes: 12.000
® Merkle Tree (MT) cache: Set associative,
64 sets, 8 blocks, 8-byte blocks, LRU,
write-back
Schemes cycle access MAC
Use of Cache RMT 15,808,417 | 130917 | 36,91
. . . . NI-HMT 16,116,007 135,472 38,183
with cache is 6.5 times faster vs without I-HMT 15,921,940 | 130,988 | 37,099
cache

Table 4: Random writes with cache

Performance Optimizations of Integrity Checking based on Merkle Trees 16/19

B rian

Conclusion

Performance Optimizations of Integrity Checking based on Merkle Trees 17/19

I Conclusion

B Two optimizations of Merkle trees have been introduced to
speed up initialization, integrity checking and tree updates

B The results shows an improvement of the trees initialization by
using Hollow Merkle trees

B The cache improves the performance after the initialization

B The choice between the two types of Hollow Merkle trees
depends on the use case

Performance Optimizations of Integrity Checking based on Merkle Trees 18/19

Thank you for your attention

Performance Optimizations of Integrity Checking based on Merkle Trees 19/19

	Introduction
	Merkle Trees Management
	Merkle Tree Caches
	Experiments and Results
	Conclusion

