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I cContext

B The integrity protection requests the use of one-way function
(hash function or MAC)
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B But the secure storage is usually small and expensive
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N B Merkle Tree

Definition

® Merkle Tree hierarchically organises the reference digests and stores the root in
the secure storage

Trusted storage level #is
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Merkle Trees Management
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Merkle Tree
Problematic
Issue
Merkle tree leads to significant storage and performance overheads:
B initialization: based on iterative function

B Integrity Checking / Update: increase the number of untrusted storage
access and digest computations
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Merkle Tree
Problematic

Issue
Merkle tree leads to significant storage and performance overheads:
B initialization: based on iterative function

B Integrity Checking / Update: increase the number of untrusted storage
access and digest computations

Optimization

B Initialization: introduce Hollow Merkle tree

B Integrity Checking / Update: use of a customized cache located inside a
secure area.
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N B Merkle Trees

Initialization
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N B Merkle Trees
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Merkle Tree Caches
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I Usec of Cache

B The use of cache decreases the bandwidth with the mass storage and, also
reduces the number of digest computations

B Two particular algorithms are introduced:

e ASAP: the integrity checking ends as soon as we match an intermediate
node into the cache

e ALAP: the update of node into the untrusted storage is delayed as late as
possible storage
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I Usec of Cache

B The use of cache decreases the bandwidth with the mass storage and, also
reduces the number of digest computations

B Two particular algorithms are introduced:

e ASAP: the integrity checking ends as soon as we match an intermediate

node into the cache
e ALAP: the update of node into the untrusted storage is delayed as late as

possible storage

Issue
ALAP algorithm causes Merkle tree incoherency between the nodes stored into the
cache and that stored into the untrusted storage

Cache customisation

Modify the behavior of Write-back policy (i.e. modify READ and WRITE functions of
cache controller and append new functions)
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Experiments and Results
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I Case Study: SecBus Project

Purpose
Provide a strong confidentiality and integrity protection against
on-board attacks (including replay attacks)
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I |nhitialization

Schemes cycle access MAC
®  Memory interconnect latency: 100 CPU clock RMT 4,219,439 29,142 10,885
cycles NI-HMT 101,559 637 372
® DES algorithm latency: 4 CPU clock cycles I-HMT 250,988 21,033 378
m  Size of MT and memory page: 4 KB T b| 1 Initiali . .
® Number of random writes: 12.000 a ) € 1: Initialization step without
®  Merkle Tree (MT) cache: Set associative, cache
64 sets, 8 blocks, 8-byte blocks, LRU,
write-back
Use Of H MT Schemes cycle access MAC
RMT 4,097,234 28,480 10,331
m |-HMT: 22.5 times faster vs RMT NI-HMT 21,975 186 72
X I-HMT 181,646 20,638 47
B NI-HMT: 186.5 times faster vs
RMT

Table 2: Initialization step with
cache
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I Random Writes

Schemes cycle access MAC
RMT 102,515,933 684,103 432,000

NI-HMT 102,929,333 688,063 432,264
I-HMT 102,515,933 684,103 432,000

B Memory interconnect latency: 100 CPU clock
cycles

® DES algorithm latency: 4 CPU clock cycles
®  Size of MT and memory page: 4 KB . . .
"y pag Table 3: Random writes without cache
®  Number of random writes: 12.000
®  Merkle Tree (MT) cache: Set associative,
64 sets, 8 blocks, 8-byte blocks, LRU,
write-back
Schemes cycle access MAC
Use of Cache RMT 15,808,417 | 130917 | 36,91
. . . . NI-HMT 16,116,007 135,472 38,183
with cache is 6.5 times faster vs without I-HMT 15,921,940 | 130,988 | 37,099
cache

Table 4: Random writes with cache
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Conclusion
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I Conclusion

B Two optimizations of Merkle trees have been introduced to
speed up initialization, integrity checking and tree updates

B The results shows an improvement of the trees initialization by
using Hollow Merkle trees

B The cache improves the performance after the initialization

B The choice between the two types of Hollow Merkle trees
depends on the use case
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Thank you for your attention
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