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ABSTRACT
We present a process for detection of IP theft in VLSI devices that
exploits the internal test scan chains. The IP owner learns imple-
mentation details in the suspect device to find evidence of the theft,
while the top level function is public. The scan chains supply di-
rect access to the internal registers in the device, thus making it
possible to learn the logic functions of the internal combinational
logic chunks. Our work introduces an innovative way of applying
Boolean function analysis techniques for learning digital circuits
with the goal of IP theft detection. By using Boolean function
learning methods, the learner creates a partial dependency graph
of the internal flip-flops. The graph is further partitioned using
the SNN graph clustering method, and individual blocks of com-
binational logic are isolated. These blocks can be matched with
known building blocks that compose the original function. This en-
ables reconstruction of the function implementation to the level of
pipeline structure. The IP owner can compare the resulting struc-
ture with his own implementation to confirm or refute that an IP
violation has occurred. We demonstrate the power of the presented
approach with a test case of an open source Bitcoin SHA-256 accel-
erator, containing more than 80,000 registers. With the presented
method we discover the microarchitecture of the module, locate
all the main components of the SHA-256 algorithm, and learn the
module’s flow control.

1. INTRODUCTION
In the highly distributed horizontal model of semiconductor de-

velopment, which involves multiple parties all over the globe, IP
piracy has become a significant concern [1]. Vast research has been
devoted to finding an efficient method for IP protection. One of the
suggested approaches is the watermarking technique, where addi-
tional data is embedded into the design in a way that its removal
is difficult. Different types have been proposed, such as constraint-
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based watermarking or watermarking state machines [2, 3]. The
presence of this watermark in the target design may serve as a proof
of theft. An additional technique for fighting IP theft is the IC me-
tering technique, in which every IC instance is uniquely marked
[4, 5]. The aforementioned methods require notable effort at the
design stage. In addition, even in the presence of the watermarks
or similar structures, their detection remains a challenge [6] . The
power of Intellectual Property is measured by its contribution as
well by the ability to legally protect it. We propose a method for
detection of IP theft that is efficient both in the presence and ab-
sence of the special structures. The proposed method is based on
full reverse engineering that enables extracting special structures or
patented implementation details from the target design. Side Chan-
nel Analysis for Reverse Engineering (SCARE) has been discussed
in several publications [7, 8, 9], where power analysis was used.
We demonstrate how reverse engineering is possible thanks to the
test scan chains embedded in digital VLSI devices.

Scan insertion is a well-known DFT (Design-For-Test) technique
that allows for the automatic generation of test vectors for produc-
tion test of a VLSI device. Thanks to its efficiency and ability to
achieve high coverage, it has become a de facto standard for testing
digital circuits. However, this technique also introduces a security
breach. This security breach, usually called a scan side channel,
has been investigated by several research groups [10, 11, 12, 13,
14, 15]. The attacks that exploit the scan side channel target cryp-
tographic keys or other secrets held in the device. Recently, an
additional threat was reported: the possibility of reverse engineer-
ing using the scan side channel [16, 17]. In this attack mode, the
entire device logic can be discovered with the help of the test scan
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Figure 2: SHA-256 algorithm block diagram. (a) SHA-256 execution flow, including preprocessing stage, message schedule, which
outputs 64x32-bit words, and 64 compression stages. (b) Detailed diagram of two 256-bit wide compression stages. Each includes
6x32 pass-through connections, two 32-bit adders, one 5-element and one 7-element. In addition, the compression stage includes
permutations, selectors and majority functions.

interface.
In [16], Azriel et al. give a detailed description of how to perform

reverse engineering with scan. We summarize it here for complete-
ness. The scan insertion algorithm runs at the design stage and adds
to the circuit a special shi f t mode, which arranges all the internal
registers in one or a few shift registers, called scan chains (see Fig-
ure 1), and connects both sides of the chain to the chip interface.
During manufacturing, the production tester may switch the chip
to the shift mode and use the scan chains both to place the chip in
the desired state (Shi f tIn operation) and to sample its current state
(Shi f tOut operation). The Shi f tIn and Shi f tOut operations can be
combined with a single functional (Capture) cycle to learn (Probe)
the output of the combinational function F for a given input. The
function F aggregates all the combinational logic of the chip. It re-
ceives the circuit’s primary inputs and register outputs as an input
vector, and it returns the primary outputs and register inputs as an
output vector. Heuristic algorithms can then be used to find a good
approximation of the function F , from which circuit functionality
can be conjectured.

The reverse engineering is presented in [16] as a threat. How-
ever, the same method can serve constructive purposes [18]. If the
learner has a reference model of the design, she can compare the
learned structure with the model to find discrepancies that may lead
to detection of maliciously implanted or Trojan hardware. Alterna-
tively, the learner can use the reverse engineering for matching with
the model to discover IP protection violations. In this paper, we
present a case study in which the SHA-256 [19] accelerator imple-
mentation details are revealed with the help of a scan-based reverse
engineering technique.

We assume in this paper that the scan test interface is present
and accessible in the target device. This assumption is reasonable
for a typical device that does not target security applications. Ven-
dors of secure VLSI devices often protect their scan interface with
authentication, obfuscation or other mechanisms. This publication
may also motivate the IP violators to employ protection to conceal
the event of theft. The scan-based reverse engineering method may

overcome some protection mechanisms, especially when combined
with other methods, as detailed in [16]. The violator may also de-
cide to exclude the entire IP from scan. The fact of exclusion, in
addition to being a quality issue, may raise suspicion that the IP has
been intentionally stolen. Modern designs employ advanced DFT
techniques such as scan compression to save test resources. Scan
compression may add complexity to the learning. Nevertheless, it
does not fully prevent it [11, 14].

The remainder of this paper is organized as follows. Section 2
presents the details of the SHA-256 algorithm implementation. Sec-
tion 3 introduces the learning flow. Section 4 presents the results
of the test case evaluation. Finally, Section 5 summarizes and dis-
cusses directions for future work.

2. SHA-256 ALGORITHM
SHA-2 is a widely used family of cryptographic hash functions.

The family comprises 6 members distinguished by the size of the
hash value. In this paper we examine one member of the family,
namely SHA-256. The SHA-256 algorithm receives a message of
an arbitrary length and produces a 256-bit long digest (Figure 2a).
At the first stage, the original message is padded, which makes its
length an integer number of 512-bit chunks. The subsequent pro-
cessing runs for each chunk sequentially. The processing comprises
a message schedule and 64 stages, called compression stages. The
message schedule takes the 512-bit input and prepares 64 32-bit
words, one for every compression stage. The first 16 words are
a copy of the input chunk, and for the remaining 48 words, the
schedule operation involves bit permutations, XOR operations and
a 4-input 32-bit adder. The compression stage receives an 8 by 32-
bit hash value and produces an input to the next stage, in which
6 out of the 8 words are a mere permutation of the input, and the
remaining 2 words are the result of a 5-element and a 7-element
adder respectively. The inputs to the adder are the words from the
input of the stage, while some of them pass additional transforma-
tions, which include permutations, XOR, selectors and a majority
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Figure 3: The directed bipartite partial dependency graph. (a) After the run of the junta algorithm. (b) After SNN clustering (colors
designate clusters). (c) After completing missing dependencies (bold lines indicate newly added edges).

function.
For the case of IP theft detection, we assume that the exact func-

tion of the circuit is known, and the target is to discover the im-
plementation details. Namely, the majority of the combinational
building blocks are known, and the objective is to learn how they
are combined, what the structure of the pipeline is and what the
differences from the original function are, if such exist. Hence,
the learning method is built around recognition of the known struc-
tures.

The SHA-256 algorithm can be seen as an acyclic data flow
graph with many repetitive stages along the way. The implementor
can decide on a number of pipeline stages by dividing the stages
of the algorithm. Figure 2b shows two stages of the SHA-256 in-
ner loop. If the implementation dedicates one pipeline stage for
one compression stage, the combinational logic between the cor-
responding flip-flops will include six 32-bit pass-through connec-
tions, and two 32-bit arithmetic sums: one of seven and the other
of five elements. However, if two compression stages of the algo-
rithm comprise one pipeline stage, the combinational logic for one
pipeline stage will include four 32-bit pass-through paths, and four
32-bit arithmetic sums: of 5, 7, 11 and 17 elements. Alternatively,
if the main constraint is power or silicon real estate, even a sin-
gle compression stage can be divided, and the same adder reused
several times during calculation of this stage. Performance-hungry
applications will use deep pipeline, and latency oriented designs
will strive to combine as many calculations as possible in a single
pipeline stage.

Despite the countless configurations, clearly distinguishable struc-
tures can be found in most of them. For example, even without
knowing the exact configuration such as the number of inputs or
additional logic, multiple bit adder structures have a distinct pat-
tern of dependencies between input and result bits (as we show in
detail in Section 3.1). Adders constitute the majority of SHA-256
complex building blocks; therefore, detecting adder-like structures
is helpful both for partitioning the data into hierarchical structures
and for learning the exact function of these blocks.

3. LEARNING FLOW
Discovering IP theft means detecting patterns in the target design

that match elements of the owner’s IP. The instrument available to

the learner is the operation Probe(S,v) over circuit S, defined in
Algorithm 1. Here, r designates the circuit’s internal register vec-

Algorithm 1 Probe(Circuit S, vector v)
1: r ‖ i := v . Set registers and inputs state to v
2: on−1 := o . Sample outputs of S
3: Capture
4: return r‖on−1 . New register values and outputs

tor, i the input vector, and o the circuit’s output vector. If we view
the circuit as a state machine, then the probe operation receives the
current state of the circuit and returns its next state. Obviously,
running probes for all possible values of v gives an accurate de-
scription of the circuit. Since the number of values is exponential,
this method is not practical. Thus, the objective of the learner is to
find the minimal set of probes that supply maximum information
about the design. The learner possesses a priori knowledge about
the overall function, and hence about design components. The
Boolean function analysis field [20] studies algorithms for learning
Boolean functions that belong to certain classes. In particular, the
junta learning method [21, 22] works for functions with the num-
ber of inputs limited by some constant K. Our work introduces an
innovative way of applying Boolean function analysis techniques
to learn digital circuits with the goal of IP theft detection. We em-
ploy the junta method to find the partial dependency graph, which
is further processed to identify the required structures. Following
are the steps of the learning flow:
1: Find the partial dependency graph using probes and the junta

algorithm
2: Partition the graph using the shared nearest neighbors (SNN)

clustering algorithm
3: Find missing dependency links with the help of the algorithm

VertexSort
4: Reconstruct functions within the clusters and beyond
5: Return to sequential circuit representation by folding the graph

3.1 Creating a Dependency Graph with K-Junta
Learning

The probe operation abstracts away the stateful behavior of the
circuit and represents it as a combinational Boolean function, where



primary inputs and register outputs of the circuit serve as inputs to
the function, and primary outputs with register inputs of the cir-
cuit serve as outputs of the function. We can depict this Boolean
function as a directed bipartite graph (Figure 3), where the edges
between the nodes designate dependency relations. For a Boolean
function y j = f (x1,x2, · · · ,xm), input node xi and output node y j
are connected if and only if there exists an input vector x0 such that
f (x0|xi = 0) 6= f (x0|xi = 1). At the beginning of the learning flow,
the dependency graph contains no edges. The input nodes are lo-
cated at the left side, and the output nodes at the right side of the
graph. The k-junta algorithm described below finds a subset of de-
pendency relations within the function. More details about the use
of the k-junta algorithm for reverse engineering of a digital circuit
can be found in [16].

Junta algorithm: In computational learning theory, a function
f : {0,1}n→{0,1} is called a k- junta for k ∈ x if it depends on at
most k of its input coordinates; i.e., f (x) = g(xi1 , · · · ,xik ) for some
g: {0,1}n→{0,1} and i1, . . . , ik ∈ [n] [23]. Hence, algorithms for
learning junta functions from queries can be leveraged for recon-
structing combinational circuits (or logic cones) with a transitive
fan-in bounded by a constant k. We take the adaptive algorithm
from [24]. We use the first stage of the algorithm, the stage that
finds dependencies. For this, a set of probes with random inputs is
prepared. The results of the probes are used to find input bits that
affect the output (relevant variables or RV) with a binary search-
alike method. This process runs for every output bit separately.

Algorithm 2 Junta Learning(Circuit S, k)
1: init RV[i] = /0 for all i from 1 to n+b
2: repeat
3: v := random(1,. . . ,2N -1)
4: P := Probe(S,v)
5: add(Probes, 〈v,P〉)
6: until done k ·2k times
7: for i from 1 to n+b do . Repeat for every output bit
8: for all 〈v,P〉 in Probes do
9: v̂ := {v̂1, . . . , v̂N}|v̂ j = (v j ∈RVs[i]) ? v j : 0

10: P̂ := Probe(S,v̂)
11: if Pi 6= P̂i then
12: find next RV by binary search on v keeping all v j ∈

RV [i] fixed1

13: add(RV[i], RV)
14: end if
15: end for
16: end for

The k-junta algorithm time complexity is O(log(n) ·k ·2k), when
measuring it in the number of probes. Taking into account that the
time complexity of the probe operation itself is O(n), the cumula-
tive time complexity of k-junta with scan is O(n · log(n) · k ·2k). If
junta learning runs with k lower than the bound of the circuit’s tran-
sitive fanout, it will discover only some of the dependencies. We
use the notation of In f luence, which measures the extent to which
certain input affects the function [20]. Namely, the influence of
variable xi on function f : {0,1}n→{0,1} is defined to be a prob-
ability that for a random input x, inverting the variable xi changes
the output of the function:

In fi[ f ] = Pr
x∼[0,1]n

[ f (x1, . . . ,xi, . . . ,xn) 6= f (x1, . . . ,¬xi, . . . ,xn)] (1)

The influence of the variable determines the probability to find
the corresponding link by the k-junta algorithm. The worst case
influence of a variable on a function with support size of k is 1/2k.

The k-junta algorithm finds all the dependencies for this function
with high probability. For a function with support size greater than
k, the k-junta algorithm will find relevant variables with influence
of 1/2k or higher with high probability. Consider an example of
a 32-bit adder of two elements. The influence of the i’th bit of
the result is 1/2i, and its support size is 2 · i. Hence, choosing k = i
for k-junta should be sufficient for finding all the relevant variables.
There is a practical limitation on the size of the parameter k. There-
fore, for higher order bits, only some of the relevant variables will
be found. For example, the probability of finding within reasonable
run time that bit 0 of the adder input affects bit 31 of its output is
very low. The k-junta learning stage thus creates a partial depen-
dency graph, which consists mainly of links with influence of 1/2k

and higher (Figure 3a).

3.2 Partitioning by SNN Clustering
Learning for the purpose of IP theft detection assumes that the

building blocks, such as the 32-bit adders for SHA-256, are ap-
proximately known. The dependency graph includes subgraphs
that represent these building blocks, and the learner’s goal is to
find the matching function. As the first step, it is essential to iso-
late subgraphs that include nodes potentially belonging to the same
building block (such as a pipeline stage or an arithmetic function).
The criterion we use for partitioning the graph is edge density. This
is the guiding criterion of certain graph clustering algorithms.

In particular, the adder structure has a distinct dependency pat-
tern, where bit i of the result depends on bits 0 to i of the input
operands. The same input bits will also affect all the higher order
bits of the result. In practice, the dependency graph received by
the k-junta algorithm run reveals only a partial set of dependen-
cies. Since the influence of input operand’s bit j on the result bit
i decreases exponentially with the distance i− j (see Section 3.1),
the majority of the edges entering the result bit i in the dependency
graph will originate from input bits i to i− l, where l is a function
of k in k-junta. Hence, result bits i and i+ 1 will share on aver-
age min(l, i) · d neighbors in the graph2, where d is the number of
operands of the adder (Figure 3a). Thus, the adder structure can be
isolated using the shared nearest neighbors (SNN) algorithm [25].

Our clustering groups only right-side vertices of the bipartite
graph (Figure 3b) according to the following principle: two vertices
belong to the same cluster if and only if the number of neighbors
they share is greater than the threshold t. The choice of t is impor-
tant, and may vary for different designs. A value that is too high
will cause under-fitting, i.e., some of the relevant vertices will not
be part of the cluster, while a value that is too low may group in the
same cluster loosely connected vertices (for example vertices that
share some global control signals). Different values can be tried for
t until a satisfactory partition is found.

The clustering serves two purposes: (1) It allows the hierarchical
structure of the circuit to be seen at an early stage, before logical
functionality is discovered, and (2) It groups together nodes from
the same building block, thus enabling a hypothesis to be made
on the basis of the projections between different members of the
cluster.

3.3 Completing the Graph with Missing de-
pendencies

At this stage we assume that the clustering has successfully iso-
lated individual building blocks, such as adder-like circuits in SHA-
256. To complete the picture, we need to reveal the dependencies
that the k-junta algorithm failed to discover. For this purpose, we
2In the SHA-256 implementation, adders are combined with more
functions, hence the number of edges will be slightly different.



take advantage again of the distinctive structure of the adder. At
the first stage, we sort the cluster members according to their esti-
mated bit position in the result vector of the adder. The transitive
fan-in parameter (equivalent to the number of incoming edges) can
be used as a classifier. The lowest l bits can be sorted based on the
the partial dependency graph. The remaining bits will have an ap-
proximately equal number of edges due to the limitation of k-junta.
The following algorithm estimates the order of all the variables in
the cluster. It does this recursively, at every stage removing a ver-
tex with the lowest number of edges and removing all the left-side
vertices connected to this vertex. The order in which the vertices
are removed is the final sorted order.

Algorithm 3 ClusterSort(Cluster {vertices V , edges E})
1: I = Left side vertices connected to the edges in E
2: V̂ = V
3: Î = I
4: repeat
5: vi = vertex with lowest number of edges connected to Î
6: Ii = Left side vertices connected to the edges leading to vi
7: Î = Î - Ii
8: V̂ = V̂ - vi
9: until V̂ = /0

After the sorting, the missing links are added by connecting ev-
ery vertex to all the left-side vertices connected to lower bits in the
sorted list (Figure 3c).

3.4 Function Reconstruction
After the dependency graph has been completed, the next stage is

to find the logic function for each right-side vertex. Due to the high
transitive fan-in of the adder result bits, a brute-force approach with
exhaustive search is possible only for a few lower bits. Hence, we
start by finding the exact function of the lower bits in the list. The
resulting function is then matched against known functions from
the building blocks of the original function. If a match is found, a
hypothesis will be made for the whole cluster. For example, if the
lower bits of the cluster match the lower bits of a 7-element adder,
we try to extrapolate this finding to the higher bits of the cluster.
The higher bits will be verified for compliance with the hypothesis.
For this purpose, all the lower bit dependencies will be assigned
values that should affect the higher bits in a certain way. This is
done instead of checking all their value combinations. Taking again
the adder example, the impact of operand bits 0 to i−1 on bit i of
the result is expressed in the carry-in value. Therefore, only two
assignments of these bits will be made, one yielding a carry-in of 0
and the other yielding 1. The verification of the hypothesis is sta-
tistical, based on random queries. Formal proof of the hypothesis
is computationally hard.

In addition to the nodes that belong to clusters, there are stand-
alone nodes. We assume that the majority of these nodes have fan-
in small enough so that their function can be learned exactly by
exhaustive search. Nodes with high fan-in that have sparse shared
connectivity are unlikely.

3.5 Returning to Circuit Representation
The first stage of the learning flow unfolded the circuit to turn it

into a Boolean function, which we presented as a bipartite graph,
shown in Figure 3. The last stage performs a reverse transforma-
tion by merging back pairs of nodes that correspond to the same
register. This effectively gives a sequential circuit representation,
for example as shown in Figure 2b. The resulting picture gives
additional information about the structure of the circuit and may

give answers about the parts that were not fully understood at the
preceding stages. For example, with the circuit representation, the
primary inputs of the module can be traced through the pipeline
stages in order to understand the data flow.

4. TEST CASE: BITCOIN SHA-256 ACCEL-
ERATOR

The Bitcoin bookkeeping system requires a heavy mining pro-
cess [26], which involves numerous SHA-256 hash operations. To
make this process energy efficient and economical, specialized hard-
ware was developed. For example, the Bitcoin SHA-256 acceler-
ator design from the OpenCores repository [27] allows for high
throughput mining work. To achieve this, the design incorporates
deep pipeline, thus reaching a decent size, with more than 80,000
flip-flops. This example presents an interesting test case for testing
the capability of the learning flow when dealing with large scale
designs.

4.1 Experimental Setup
To test the flow, we built a software simulator that models the

functionality of the digital circuits under test with the Probe oper-
ation. The simulator abstracts away the underlying scan protocol
that implements the probe (Algorithm 1). The RTL of the target
circuit is synthesized using the Synopsys Design Compiler. An au-
tomatic tool then converts the gate level netlist to a C++ function,
which emulates the probe operation by removing all the flip-flops
and returning the aggregate combinational logic function. This
function receives the flip-flop outputs and primary inputs and re-
turns flip-flop inputs and primary outputs. The function is then
plugged into the simulator, which implements the learning algo-
rithms, in particular k-junta learning and SNN clustering. The plat-
form we used for the simulator is a high performance server with
four Intel Xeon E5-2690 4- core processors running at 2.90GHz.
The simulation used 32 threads, each handling one node (function
output) at a time. The following stages of the algorithm are per-
formed manually by visually inspecting the results and analyzing
their distribution.

4.2 Results
The Bitcoin SHA-256 accelerator design was synthesized and

translated to C++. The partial dependency graph was obtained by
a k-junta run with k=8 in the simulator. A higher k value will
give higher accuracy (more discovered dependencies); however, the
number of required probes will be unacceptable. The subsequent
steps of the flow come to compensate for the inaccuracy caused by
the insufficient value of k. With the setup outlined in Section 4.1,
the k-junta run, the longest step of the flow, takes approximately
two hours.

With a physical device, the first step of the learning process is
obtaining access to the scan and counting the number of flip-flops
in each chain. The latter can be done by driving some pattern to the
scan chain input and counting clock cycles until this pattern appears
at the scan chain output. In the simulation environment this stage
is omitted, and we assume that all the flip-flops can be accessed
at once. However, the time complexity of the simulated probe op-
eration is comparable to the complexity of the real-life probe op-
eration, that is O(n), where n is the number of registers. Hence,
the simulation provides a good indication of the time required to
analyze a physical device.

SNN clustering is the next stage of the flow. We tried this stage
with different threshold criteria and obtained a cluster distribution
histogram for each of them. In the histogram, the clusters were
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Figure 4: Histogram of cluster sizes in the Bitcoin SHA-256 ac-
celerator. The biggest group includes clusters with 64 nodes,
hence it matches the compression stages. The second biggest
group includes clusters with 32 nodes, hence it matches the
message schedule stages.

grouped based on their size measured in the number of vertices.
Eventually, we selected the threshold that gives the sharpest his-
togram, which has the smallest number of cluster groups and largest
group sizes. This was achieved with the threshold of five. The re-
sulting histogram is shown in Figure 4. There are more than 70,000
vertices with the number of incoming edges (or transitive fan-in)
smaller than the threshold. These vertices do not belong to any
cluster, and they are not shown in the histogram. A cluster of size
1 contains vertices with transitive fan-in greater than the threshold,
which SNN algorithm did not combine with other vertices. Besides
this, two cluster groups stand out: a group of 64-sized clusters con-
taining 126 members, and a group of 32-sized clusters containing
71 members. Having prior knowledge of the function components
and the sizes of the clusters, we can hypothesize that the 64-sized
clusters correspond to two 32-bit adders and the 32-sized clusters
correspond to one 32-bit adder. This implies that (1) the 64-sized
clusters correspond to the compression stage, and (2) that the 32-
sized clusters correspond to the message schedule stage. The num-
ber 126 then corresponds to 126 compression stages. A reasonable
assumption is that their number is in fact 128, and the remaining
two stages have either been split or merged with other vertices due
to under- or overfitting. The message schedule contains 64 stages,
only 48 of which contain adders. Therefore, our hypothesis is that
the actual number of adders in the message schedule is 96, which
also matches the number of compression stages. To check our hy-
potheses, we proceed to the next stage – completing missing de-
pendencies.

This stage works separately with every cluster. First, the ver-
tices in the cluster are sorted on the basis of their detected fan-in.
Figure 5 shows the fan-in map of a sample 64-sized cluster. In
the same chart, a fan-in map of the original SHA-256 compression
stage is shown. For lower fan-in numbers, the detected fan-in curve
follows the reference curve, and then saturates at some point. This
is the expected behavior for an adder, as explained in Section 3.3.
Note that the knee in the curve appears because two adders (one
5-element and the other 7-element) compose the cluster. We then
apply the ClusterSort algorithm to guess the correct bit order.
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Figure 5: Sample cluster fan-in map. The nodes in the cluster
were sorted by fan-in. The lower curve is the result of depen-
dency finding by junta. The upper curve is the calculated fan-in
map from the SHA-256 compression stage.

We start the function reconstruction in the cluster from the node
with the lowest fan-in. For the 64-sized clusters, since we estimate
that this cluster contains the logic of the compression stage, we
match this bit with bit 0 of the output word e (Figure 2b). For
the compression stage i+ 1, bit e0,i+1 is a result of a 9-way XOR
function:

e0,i+1 =⊕[d0,h0,e6,e11,e25,k0,w0,(e0∧ f0),(¬e0∧g0)]i (2)

The fan-in of e0 is 9, assuming that k0 is a hardwired constant.
This number matches the fan-in of the node with the lowest fan-in
in the cluster. Thus, we hypothesized that this node corresponds to
bit e0 and verified the hypothesis. The stage index, and therefore
the constant k0 are not known at this stage. Thus, first we checked
the value of k0 by testing the function with a 0 vector. Matching
two Boolean functions, though an NP-hard problem in general, can
be done for a small number of variables. Note that the function is
invariant to permutations of 6 out of 9 variables. The variables e0,
f0, g0 were identified by measuring influence (1). The influence for
these three variables is 1/2, while for all the others it is equal to 1.

To extrapolate to higher bits of the cluster, we reduced the learn-
ing problem to one similar to (2) by collapsing all the lower bits of
the operands into the carry-in indicator. To eliminate contentions
between input assignments for the carry-in and assignments for the
inputs of the relevant bit, we had to identify the vectors (a and e)
that enter into the adder more than once. This was done by check-
ing the fan-out map of the cluster and comparing to the expected
fan-outs of the inputs to the compression stage. Figure 6 shows the
fan-out map of all the left-side nodes connected to the nodes in the
cluster. Eight groups, suggesting eight 32-bit words, can be clearly
seen on the map. The group with the highest fanout presumably
contains the bits from the word e. The group with the second high-
est fanout presumably contains the bits of a. Using this iterative
process, we were able to reconstruct the entire adder structure.

Finally, after reconstruction of the big structures, we returned
to the sequential circuit representation, where the architecture with
32 pipeline stages and two message schedules is identified. All in
all, we were able to learn the following details about the given im-
plementation of SHA-256: (1) the module contains two SHA-256
function instances, as follows from the number of stages; (2) the
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module has a deep pipeline: one pipeline stage per compression
stage, which means it is capable of calculating one hash function
per cycle; (3) the pipeline has no flow control, which means the
calculation never stops. Additional details may be extracted in ac-
cordance with the objective of the learner.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a novel method for detecting IP

theft. We exploit the embedded test scan chains and combine Boolean
function learning methods with graph-based algorithms. The learn-
ing algorithm detects structures in the design by taking advantage
of prior knowledge of the design components. This prior knowl-
edge allows for highly accurate reconstruction of the design im-
plementation details, which may supply sufficient evidence of the
IP violation event. The comparison is done at the logic level at the
boundaries of logic cones between sequential elements. Hence, our
method works for soft and hard IP. The detectability of the IP theft
depends on the ability to observe IP-specific elements at the logic
cone boundaries.

We demonstrated the power of this approach by using the learn-
ing algorithm to reconstruct the design of a Bitcoin SHA-256 accel-
erator, a module with more than 80,000 internal registers contain-
ing complex combinational structures. We were able to obtain the
module’s internal pipeline structure and locate all the main compo-
nents of the SHA-256 algorithm implementation.

The scan side channel is known mostly as a security threat. Un-
like the case of security-oriented VLSI devices, where the designers
may exclude sensitive parts from the scan, in the case of IP theft,
any attempt to hide a circuit may indicate that the IP is intention-
ally stolen, a more severe violation of law. Moreover, leaving large
modules disconnected from the scan may lead to unacceptable re-
duction in production test coverage and therefore product quality.

We are working to extend this work in a number of directions.
We are examining the flow with more benchmarks of designs with
different structure. We are also studying harnessing the proposed
detection method for detection of IP protection watermarks in phys-
ical devices. An additional application of the algorithm that we are
exploring is detection of deviation of the design from the original

function, which may indicate the presence of Trojan hardware.
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