
Using Scan Side Channel to
Detect IP Theft

Leonid Azriel, Ran Ginosar, Avi Mendelson
Technion – Israel Institute of Technology

Shay Gueron,
University of Haifa and Intel Israel

1

Outline

• IP theft issue in SoC
• Reverse Engineering with Scan
• Junta Learning
• Clustering and Graph Completion
• The Test Case: BitCoin SHA-256
• Conclusions

2

IP Piracy

• Modern SoC
development mode:
global and distributed

• IP passes dozens of
hands

• Issue of Trust 3

IP block 3

IntegrationIntegration

BackendBackend

FabricationFabrication

IP block 1
IP block 2

TestTest

Preventing IP theft
• Watermarks – allow identification without

altering the function
– State Machine Encoding
– Constraints on physical layout
– More…
– Detection
– Proof

• Forensic techniques
– Direct detection

4

Outline

• IP theft issue
• Reverse Engineering with Scan
• Junta Learning
• Clustering and Graph Completion
• The Test Case: BitCoin SHA-256
• Conclusions

5

Reverse Engineering of an ASIC
• Phase 1 – Invasive

Physical Circuit
– Delayering
– SEM
– Nanoscale Imaging
– Cross-section

• Phase 2 – Algorithmic
Circuit Spec
– FSM Extraction
– Model Checking
– SAT

6

Reverse Engineering of an ASIC
• Phase 1 – Invasive

Physical Circuit
– Delayering
– SEM
– Nanoscale Imaging
– Cross-section

• Phase 2 – Algorithmic
Circuit Spec
– FSM Extraction
– Model Checking
– SAT Solvers

Scan Side Channel makes phase 1 non-invasiveScan Side Channel makes phase 1 non-invasive

7

The Scan Technique

8

Goal: automate production testing

The Scan Technique

9
Need to verify every net is functional

The Scan Technique

10

Sequential Cells
(FFs / Latches)

The Scan Technique

11
Scan Insertion

Production Tester

The Scan Technique

12

01110

Shift In

Production Tester

The Scan Technique

13
Capture

0
1

1 1

0

Production Tester

The Scan Technique

14
Shift Out

1
0

0 0

1

Unfolding Sequential Circuits with Scan

Combinational Function

• Scan turns the SoC to a stateless circuit
• Mapped to the Boolean Function Learning problem: {0,1}n {0,1}n

• Exhaustive Search: Extract the Truth Table by running queries for all
inputs

• Exponential Size
15

Unfolding Sequential Circuits with Scan

• Scan turns the ASIC to a stateless circuit
• Mapped to the Boolean Function Learning problem: {0,1}n {0,1}n

• Exhaustive Search: Extract the Truth Table by running queries for all
inputs

• Exponential Size: 2Number of Registers

0 1 0 0 0
1 1 0 0 1
0 1 1 . .
.
.
.

F =

16

Combinational Function

Unfolding Sequential Circuits with Scan

• Scan turns the ASIC to a stateless circuit
• Mapped to the Boolean Function Learning problem: {0,1}n {0,1}n

• Exhaustive Search: Extract the Truth Table by running queries for all
inputs

• Exponential Size: 2n

17

0 1 0 0 0
1 1 0 0 1
0 1 1 . .
.
.
.

F =
Combinational Function

Outline

• IP theft issue
• Reverse Engineering with Scan
• Junta Learning
• Clustering and Graph Completion
• The Test Case: BitCoin SHA-256
• Conclusions

18

Limited Transitive Fan-in

• In practice, logic cones have limited number of
inputs: Transitive Fan In = K

19

Dependency Graph

• Bipartite graph represents flip-flop dependencies
• The goal: Find dependencies
• Complexity: 2n 2k: Scalable with the chip size 20

Flip-flop Outputs

Flip-flop Inputs

The K-Junta Algorithm

21

1 12(), x { , , , , x , , , }i i njy f x x x x x x 
    

Generate random queries ()y f x


The K-Junta Algorithm

22

1 12(), x { , , , , x , , , }i i njy f x x x x x x 
    

a {0,0, 0,0,0,0,0, ,0,0}, f(a) 0 
  

b {1,0, 1,0,1,0,0, ,0,1}, f(b) 1 
 

 

Generate random queries ()y f x


The K-Junta Algorithm

23

1 12(), x { , , , , x , , , }i i njy f x x x x x x 
    

a {0,0, 0,0,0,0,0, ,0,0}, f(a) 0 
  

b {1,0, 1,0,1,0,0, ,0,1}, f(b) 1 
 

 

a { ,0, 0,0,0,0,0, ,0,0}, f()1 a 0 
  

The K-Junta Algorithm

24

1 12(), x { , , , , x , , , }i i njy f x x x x x x 
    

a {0,0, 0,0,0,0,0, ,0,0}, f(a) 0 
  

b {1,0, 1,0,1,0,0, ,0,1}, f(b) 1 
 

 

a { ,0, 0,0,0,0,0, ,0,0}, f()1 a 0 
  

a {1,0, ,0,0,0,0, ,0,0}, f()1 a 0 
  

The K-Junta Algorithm

25

1 12(), x { , , , , x , , , }i i njy f x x x x x x 
    

a {0,0, 0,0,0,0,0, ,0,0}, f(a) 0 
  

b {1,0, 1,0,1,0,0, ,0,1}, f(b) 1 
 

 

a { ,0, 0,0,0,0,0, ,0,0}, f()1 a 0 
  

a {1,0, ,0,0,0,0, ,0,0}, f()1 a 0 
  

a {1,0, 1,0, ,0,0, ,0,0}, f()1 a 1 
  

The K-Junta Algorithm

26

1 12(), x { , , , , x , , , }i i njy f x x x x x x 
    

 k 2log kO n n  

a {0,0, 0,0,0,0,0, ,0,0}, f(a) 0 
  

b {1,0, 1,0,1,0,0, ,0,1}, f(b) 1 
 

 

a { ,0, 0,0,0,0,0, ,0,0}, f()1 a 0 
  

a {1,0, ,0,0,0,0, ,0,0}, f()1 a 0 
  

a {1,0, 1,0, ,0,0, ,0,0}, f()1 a 1 
  

Relevant Variable

Partial Dependency Graph

• If k is too high Partial dependency graph
• Influence = sensitivity of a function to a variable
• K-Junta works for Influence >1/2K

27

Flip-flop Outputs

Flip-flop Inputs

Outline

• IP theft issue
• Reverse Engineering with Scan
• Junta Learning
• Clustering and Graph Completion
• The Test Case: BitCoin SHA-256
• Conclusions

28

The Adder Example

• Dependencies across many bits are not likely
to appear
– Influence too low

• Close neighbor dependencies are discovered
• Need to group all the nodes of the adder

29

nn n-1n-1 n-2n-2 n-3n-3 44 33 22 11

SNN Clustering

30

nn n-1n-1 n-2n-2 n-3n-3 44 33 22 11

• Shared Nearest Neighbors Clustering
– Every pair of nodes with >threshold shared

dependencies assigned to the same cluster

SNN Clustering

• Shared Nearest Neighbors Clustering
– Every pair of nodes with >threshold shared

dependencies assigned to the same cluster

31

Flip-flop Outputs

Flip-flop Inputs

Enumeration of the Adder Nodes

• Sort outputs in a cluster by their fan-in
– Sort inputs accordingly

• Handle the plateau by iterative enumeration
– Higher order inputs feed higher order outputs 32

Fan-In Actual

Detected

44 33 22 11

nn n-1n-1 n-2n-2 n-3n-3 44 33 22 11

Completing the graph

• Assuming the learner is looking for an adder
• Add dependencies of output bit i on all input

bits 0 to i.
33

Flip-flop Outputs

Flip-flop Inputs

Outline

• IP theft issue
• Reverse Engineering with Scan
• Junta Learning
• Clustering and Graph Completion
• The Test Case: BitCoin SHA-256
• Conclusions

34

SHA-256 Structure

• Mostly adders!
35

Learning Strategy

• The implementation is not known in advance
• But there are building blocks inherent to SHA-

256
– 7-way adder
– 5-way adder

• We search for structures that look like adders

36

BitCoin SHA-256 Accelerator

• Open source design from opencores.org

• Performance oriented, heavily pipelined

• ~80,000 registers

• Used a software simulator
37

After K-Junta and Clustering

38

64-sized clusters match
2 32-bit adders
 Compression Stage

32-sized clusters match
1 32-bit adder
Message Schedule

Number of stages suggests two SHA-256 instances, but not necessarily

SNN Clustering Error

Zooming in into a cluster

• Sort by enumeration

• How to detect
individual operands?

39

0

50

100

150

200

250

300

1 11 21 31 41 51 61

Fa
n-

in
Node in the sorted list

Detecting operands by fanout

40

• Fanout components
– Bit order
– Number of functions
– Function type

Returning to sequential

41

Flip-flop Outputs

Flip-flop Inputs

Flattened

Folded

Summary

• A novel method of IP theft detection
– By non-invasive reverse engineering with scan
– Boolean function analysis and graph methods
– Works with or without watermarks

• Learned a 80,000-register SHA-256 accelerator
• What next

– More test cases
– Detecting Trojan hardware

42

Thanks!

43

