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IP Piracy

• Modern SoC
development mode:
global and distributed

• IP passes dozens of
hands

• Issue of Trust 3
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Preventing IP theft
• Watermarks – allow identification without

altering the function
– State Machine Encoding
– Constraints on physical layout
– More…
– Detection
– Proof

• Forensic techniques
– Direct detection

4



Outline

• IP theft issue
• Reverse Engineering with Scan
• Junta Learning
• Clustering and Graph Completion
• The Test Case: BitCoin SHA-256
• Conclusions

5



Reverse Engineering of an ASIC
• Phase 1 – Invasive

Physical Circuit
– Delayering
– SEM
– Nanoscale Imaging
– Cross-section

• Phase 2 – Algorithmic
Circuit Spec
– FSM Extraction
– Model Checking
– SAT
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Reverse Engineering of an ASIC
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Scan Side Channel makes phase 1 non-invasiveScan Side Channel makes phase 1 non-invasive
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The Scan Technique

8

Goal: automate production testing



The Scan Technique
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Need to verify every net is functional



The Scan Technique
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Sequential Cells
(FFs / Latches)



The Scan Technique
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Scan Insertion
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Unfolding Sequential Circuits with Scan

Combinational Function

• Scan turns the SoC to a stateless circuit
• Mapped to the Boolean Function Learning problem: {0,1}n {0,1}n

• Exhaustive Search: Extract the Truth Table by running queries for all
inputs

• Exponential Size
15
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Limited Transitive Fan-in

• In practice, logic cones have limited number of
inputs: Transitive Fan In = K
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Dependency Graph

• Bipartite graph represents flip-flop dependencies
• The goal: Find dependencies
• Complexity: 2n 2k: Scalable with the chip size 20

Flip-flop Outputs
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The K-Junta Algorithm
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Partial Dependency Graph

• If k is too high Partial dependency graph
• Influence = sensitivity of a function to a variable
• K-Junta works for Influence >1/2K
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The Adder Example

• Dependencies across many bits are not likely
to appear
– Influence too low

• Close neighbor dependencies are discovered
• Need to group all the nodes of the adder
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SNN Clustering
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nn n-1n-1 n-2n-2 n-3n-3 44 33 22 11

• Shared Nearest Neighbors Clustering
– Every pair of nodes with >threshold shared

dependencies assigned to the same cluster



SNN Clustering

• Shared Nearest Neighbors Clustering
– Every pair of nodes with >threshold shared

dependencies assigned to the same cluster
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Enumeration of the Adder Nodes

• Sort outputs in a cluster by their fan-in
– Sort inputs accordingly

• Handle the plateau by iterative enumeration
– Higher order inputs feed higher order outputs 32

Fan-In Actual

Detected
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Completing the graph

• Assuming the learner is looking for an adder
• Add dependencies of output bit i on all input

bits 0 to i.
33
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SHA-256 Structure

• Mostly adders!
35



Learning Strategy

• The implementation is not known in advance
• But there are building blocks inherent to SHA-

256
– 7-way adder
– 5-way adder

• We search for structures that look like adders

36



BitCoin SHA-256 Accelerator

• Open source design from opencores.org

• Performance oriented, heavily pipelined

• ~80,000 registers

• Used a software simulator
37



After K-Junta and Clustering
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64-sized clusters match
2 32-bit adders
 Compression Stage

32-sized clusters match
1 32-bit adder
Message Schedule

Number of stages suggests two SHA-256 instances, but not necessarily

SNN Clustering Error



Zooming in into a cluster

• Sort by enumeration

• How to detect
individual operands?
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Detecting operands by fanout
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• Fanout components
– Bit order
– Number of functions
– Function type



Returning to sequential

41

Flip-flop Outputs

Flip-flop Inputs

Flattened

Folded



Summary

• A novel method of IP theft detection
– By non-invasive reverse engineering with scan
– Boolean function analysis and graph methods
– Works with or without watermarks

• Learned a 80,000-register SHA-256 accelerator
• What next

– More test cases
– Detecting Trojan hardware
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Thanks!
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