Can Data-Only Exploits be Detected at Runtime Using
Hardware Events?
A Case Study of the Heartbleed Vulnerability

Gildo Torres
Clarkson University
8 Clarkson Ave
Potsdam, New York
torresg@clarkson.edu

ABSTRACT

In this study, we investigate the feasibility of using an anomaly-
based detection scheme that utilizes information collected from
hardware performance counters at runtime to detect data-oriented
attacks in user space libraries. Using the Heartbleed vulnerability
as a test case, we studied twelve different hardware events and used
a Support Vector Machine (SVM) model to classify between regu-
lar and abnormal behaviors. Our results demonstrated a detection
accuracy over 92% for the two-class SVM model and over 70%
for the one-class SVM model. We also studied the limitations of
using certain type of hardware events and discussed possible impli-
cations of their use in detection schemes. Overall, the experiments
conducted suggest that data-oriented attacks can be more difficult
to detect than control-data exploits, as certain events are suscepti-
ble to interference hence less reliable.

1. INTRODUCTION

Malicious software has existed for many years and continues
to proliferate. There are many classes of malware, e.g., rootk-
its, viruses, trojans, worms, spywares, exploits, etc., each with its
own goal and behavior. In an effort to address the malware prob-
lem, researchers have devised numerous prevention and detection
schemes, each focused on a certain aspect of the malware life-cycle,
from creation, distribution, to execution. While it is infeasible to
prevent bad actors from authoring malware, schemes that target
the distribution and execution of malware do exist. For example,
modern App marketplaces provide an effective “whitelisting” ser-
vice; digitally signed software can prevent the execution of soft-
ware from unknown sources. As an additional example, vulnera-
bility analysis tools can be used to identify and even fix vulnera-
bilities in software, thereby preventing the distribution of malware.
Techniques such as no-execution bit (NX), address space layout
randomization (ASLR) [3[], and control flow integrity (CFI) [2}[19]
are used to prevent the execution of malicious logic. Despite the
valiant efforts, prevention techniques are not perfect as evidenced
by the existence of third party marketplaces and continued presence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HASP 2016, June 18 2016, ,
© 2016 ACM. ISBN 978-1-4503-4769-3/16/06. .. $15.00
DOI: http://dx.doi.org/10.1145/2948618.2948620

Chen Liu
Clarkson University
8 Clarkson Ave
Potsdam, New York
cliu@clarkson.edu

of vulnerabilities. Detection techniques are used as an extra line of
defense when prevention fails.

Here we focus on the detection of anomalous execution due to
malware. Malware can be separated into three categories: self-
contained malware (malware with its own code such as rootkits),
parasitic malware (malware that executes new code in the context
of a host process such as viruses and worms),and data-only mal-
ware (malware that can achieve its goals without introducing any
new code). Previous research has focused on the first two cate-
gories where behavioral models were used to detect the presence
of suspicious code such as rootkits [[16]] and the execution of newly
introduced code through injection or control flow hijacking known
as control-data attacks [13})7,|0]].

In this work we focus on data-only malwares that do not divert
the application’s control-flow and where no additional code is intro-
duced into the system during the attack. Data exploits, also known
as data-oriented attacks or non-control-data attacks, are a type of
data-only malware that seeks to cause a piece of software to vio-
late the confidentiality and/or integrity of the data and the rest of
the system by solely manipulating the inputs [9]. These types of
attacks usually result in the disclosure of sensitive information/data
to the attackers or an escalation of privileges, allowing the attacker
to achieve a similar level of compromise of the victim system as
that achieved by common control-data attacks 9, |6]. SQL injec-
tions are famous examples of this type of malware and the Heart-
bleed vulnerability is a recent example where sensitive data is dis-
closed inadvertently.

To formulate the study, we assume that the malware executes in
the context of a user-space program and there exists a privileged
kernel module that controls the performance counting hardware
used for detection, similar to that of Tang et al. [13]. Hardware-
based prevention schemes such as the NX bit are preferred since
they have better performance characteristics and are more diffi-
cult to bypass. However, important contextual information such as
process abstractions might be lost, meaning a software layer must
still exist to provide the context. The same observations hold for
hardware-based detection.

We focus on one specific type of vulnerability, buffer over-reads,
to study the feasibility of performing anomaly detection of data-
only malware using hardware performance counters. There are two
reasons for this choice. First, buffer over-reads are very similar in
nature to buffer overruns, which were studied in [13]]. Second, we
can use the Heartbleed Bug (CVE-2014-0160) as a real world case
study.

The main contributions of our work can be summarized as fol-
lows:

— We believe this work to be the first one to use low-level hard-

http://dx.doi.org/10.1145/2948618.2948620

ware events for the detection of data-oriented attacks.

— We conduct an empirical study on the statistical behavior of
hardware events between malicious and regular behavior.

— We study the feasibility of using low-level hardware events
to detect data-oriented attacks.

— We present an in-depth qualitative analysis of the hardware
events behavior and demonstrate that certain events are un-
stable and therefore unreliable.

— We assess the proposed methodology in terms of its advan-
tages and limitations with the study of a recent real-world
vulnerability.

2. BACKGROUND

2.1 Hardware Performance Counters

Hardware performance counters (HPCs) are special hardware
registers available on most modern processors. These registers can
be used to determine the number of occurrences of certain types
of hardware events such as: instructions retired, cache-misses suf-
fered, and branches miss-predicted. These events are reckoned
without slowing down software execution because they use dedi-
cated hardware.

Although originally created for debugging hardware designs dur-
ing development, performance tuning, or identifying bottlenecks in
program execution, HPCs can also be used to collect runtime be-
havioral information of programs. The type and number of avail-
able events and the methodology for using these performance coun-
ters vary widely, not only across architectures, but also across pro-
cessor families sharing the same Instruction Set Architecture (ISA).
For example, Intel’s modern processors offer more than two hun-
dred different events that can be tracked [10]; however, only a se-
lected few events can be monitored concurrently due to limitations
in the number of available HPC registers.

2.2 Anomaly Detection

Anomaly detection refers to the problem of finding patterns in
data that do not conform to expected behavior [4]]. Much work is
therefore dedicated to the modeling of expected behavior. In the
context of malware detection, the advantage is it can be deployed
to detect both known and unknown attacks. It can also be designed
to scale with programs by carefully selecting the events to be mon-
itored and profiled. On the downside, anomaly detection can lead
to false positives or false negatives. The detection model can only
approximate the behavior of the actual program, therefore errors
tend to occur.

2.3 OpenSSL

OpenSSL is an open source implementation of the Secure Sock-
ets Layer (SSL v2/v3) and Transport Layer Security (TLS) proto-
cols as well as a general-purpose cryptography library [[14]. There
exist versions of the OpenSSL library for nearly every major plat-
form including Windows, Linux, and Mac OS. The most notable
software using OpenSSL are open source web servers like Apache
and nginx. The combined market share of just those two is over
66% according to Netcraft’s April 2014 Web Server Survey [11].
Numerous vulnerabilities have been discovered, reported, and fixed
within the OpenSSL library, as with any software project of its
magnitude, one of the most serious being Heartbleed.

2.4 Heartbleed Vulnerability

Heartbleed is a serious vulnerability discovered in the OpenSSL
library which was publicly disclosed in April 2014 [[1]]. The bug ap-
pears in the implementation of the Heartbeat Extension for the TLS

and DTLS protocols. The protocol provides a way to test and keep
alive secure communication links without the need to re-negotiate
the connections. Under normal circumstances, a requesting party
can send a Heartbeat request that contains a token 7 of length Ty,
and a request size of R,i,.. The server is expected to echo back
the Rz, bytes of the token. The main issue consists of a miss-
ing check between an advertised request Ry;;, and the real token
size Tyize. This allows the requesting party to trick the target into
sending more information (memory content) than it should. Due to
the widespread deployment of the OpenSSL library, the existence
of cryptographic keys in memory and the ease of exploitation, this
vulnerability had a significant impact on secure web servers when
it was disclosed. The vulnerability itself has been well studied and
there has been a number of proof-of-concept exploit malware de-
veloped ever since, making it a great case study candidate.

3. SYSTEM ARCHITECTURE/MODEL

A high level representation of our proposed system architec-
ture is shown in Figure I} The anomaly detection module resides
between the targeted applications and the hardware performance
counters. Its presence is transparent to the targeted process and
shared library.

— "i Shaled i Oﬂepdipg System
Detection 1 Library Application Software
Module

R*——Fi Hardware Performance Counters E Hardware Resources

Figure 1: Simplified system architecture.

3.1 Heartbeat Good vs Bad Requests

The Heartbleed vulnerability consists of a mismatch between the
real size of a message’s token (7;,.) and the size of the payload that
is advertised/requested by the attacker (Rg;;.). If the request is not
malicious, then the size of the requested payload is equal to the real
size of the token (Ry;;e == Tyiz) and there is no extra data included
in the reply, which we refer to as good requests. For the malicious
cases, the requested size is larger than the real size of the token
(Rsize > Tyize), where the difference between them represents the
total amount of data leaked by the vulnerable system, which we
refer to as bad requests. In a single request, the maximum size of
the token being sent is 16KB and the maximum requested payload
allowable is 64KB.

3.2 Detection Module

For the detection module, we employed four different classifica-
tion methods:

o Single-event/single-threshold: Samples are individually clas-
sified as good or bad based on a simple threshold corre-
sponding to each hardware event.

o Multiple-events/multiple-thresholds: First, samples are clas-
sified as good or bad based on individual event thresholds,
and then a final classification is made based on the total num-
ber of events suggesting the same decision.

e Multi-class SV This method trains a multi-class Support
Vector Machine (SVM) model with a training set containing
both good and bad requests and then conducts classification
on a test set containing both good and bad samples.

e One-class SVM: Using a one-class Support Vector Machine
model, the training set exclusively contains good Heartbeat

IWe used libsvm library [5]] for the SVM classification model and
prediction.

Table 1: Recorded Hardware Events.

Event Name Description
RET Near return instructions retired
MISP_BR Mispredicted branch instructions
LOAD Load instructions retired
MISP_BR_C Mispredicted conditional branches
STORE Store instructions retired
MISS_ITLB I-TLB misses
STLB_HIT Shared TLB hits after i-TLB misses
MISS_DTLB DTLB-misses
CALL_ID Indirect near call instructions retired
MISS_ICACHE | I-Cache misses
CALL_D Direct near call instructions retired
MISS_LLC Last Level Cache misses

CALL_D

CALL ID

LOAD

MISP BR_

-~ GooD
— BAD

-~ GooD
— BAD

MISP_BR_C

-~ GooD
— BAD

Ocurrences

:: -- GOOD
4 |— BaD

MISS ITLB

-~ GooD
" — BAD

MISS_DTLBS

STLB_HIT

MISS_LLC

-- GooD
— BAD

-- GooD
— BAD

MISS_ICACHE

-- GooD
— BAD

5 -~ GooD
4 — BAD

samples. The classification is conducted on the test set con-
taining both good and bad samples.

For the work presented in this paper, the detection module was
implemented at the same privilege level as the OpenSSL library
(user-space). This helps reducing variability and isolating poten-
tial issues. Moving our implementation to kernel space should be
straightforward although confirmation is left as future work.

4. METHODOLOGY

This section includes a description of the methodology followed
in this work.

4.1 Configuration

Platform: The experiments were conducted on a machine pow-
ered by an Intel Core 17 950 (Nehalem, QuadCore, HT, 3.06GHz)
processor with 8GB of memory running Ubuntu 13.04 with Linux
kernel version 3.8.0. The Core i7 processor used includes 4 built-
in configurable hardware counters. The vulnerable environment
had OpenSSL version 1.0.1f installed, which was the last version
containing the Heartbleed vulnerability. The perf_events syscall in
Linux was used to configure and access the hardware counters.

Hardware Events: Given the extensive nature of distinct hard-
ware conditions that could be recorded using HPCs [10]] and the
huge number of combinations that could be derived, making an ex-
haustive study is infeasible. Instead, we selected an initial set of 12
hardware events reported in recent literature [[7 |8} |13} [15] [16} |17,
18].. Table[T]shows the hardware events considered in this study.

Sample collection: We modified the OpenSSL library to in-
clude calls to perf_events to configure, start, and stop the hardware
performance counters at runtime. Counting was only enabled dur-
ing user-space execution, excluding kernel events. A sample of
the hardware event readings was collected every time the Heartbeat
function was invoked. The samples were saved to a log file for later
processing and classification. By following this approach, the per-
formance impact on the normal execution of the targeted process
and shared library was minimized.

Exploit: The Heartbleed attacks we generated use a modified
version of the exploit developed by Stafford [[12]]. For this study, it
was assumed that the host was not compromised at any level and
that there was no interference with the configuration and function-
ing of the HPCs.

5. EVALUATION

This section includes details of the systematic experimental stud-
ies conducted. We keep the following questions in mind when de-
signing our experiments:

— How clearly can different high-level actions, specifically buf-
fer over-reads, be recognized using hardware events?

Event (_OL]nt

Figure 2: Distribution of occurrences for event counts of good and
bad heartbeat requests. The x axis represents each individual hard-
ware event count, while the y axis shows the number of occurrences
for every count. Both axes are normalized to their individual event
range.

— Which hardware events are altered the most by such changes
in software behavior?

— Are the hardware events reliable?

— How precisely could these actions be detected by only mon-
itoring a limited number of these hardware events?

5.1 Test Cases

The set of experiments we ran are as follows:
— Total of 1 million tests divided into 1000 test groups (1000 x
1000).

— Each test group containing 1000 Heartbeat requests.
Different good/bad Heartbeat request distribution per grou
Attack intensity distribution within groups varied from [1000
good requests /0 bad request] to [1 good request /999 bad
requests].

We used the server application included within the OpenSSL
toolkit as the vulnerable target and recorded the hardware events
for every Heartbeat request made to the server. Because this study
targeted a total of 12 different hardware events, and the experimen-
tal platform only has four hardware performance counter registers
to count simultaneously, we repeated the experiments three times
collecting different subsets of four events at every run.

5.2 Overhead

In a separate study, we measured the overhead added to the tar-
get function by the Linux’s perf_events syscall when accessing the
performance counters. On average, the performance counter event
collection scheme added a 7% overhead to the Heartbeat function.
Taking into consideration the fact that the time it takes to access the
hardware counters should be uniform and independent of the pro-
cess(s) being monitored, and the fact that the Heartbeat extension
itself is very simple, such delay represents a reasonable overhead.
Furthermore, what we considered is the worst case scenario, given
the fact that a simpler and more direct manipulation of the per-
formance counter registers could be implemented at the assembly
level using the RDMSR and WRMSR instructions directly.

5.3 Hardware Events’ Statistical Distribution

The conducted experiments capture the behavior of different hard-
ware events when subjected to different good and bad requests.

2For all heartbeat requests the token size (7,) and the requested
payload’s size (Ryiz,) were randomly generated within the ranges
previously described in Section 3.1}

N RET CALL_D CALL_ID L%Dl
osf— — -
0.6 -
0.4 r— -
02
0.0
L 1 STORE MISP_BR MISP BR_C MISS_ITLB
2oL AL
= /
0.8
s S
‘@ 04 s - —
€ o2)
g .
= 1o_MISS DTLBS STLB HIT MISS ICégHE M§§ LLC
0.8 — — // B
0.4 [
0.2

D'U.O 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 10
False Positive rate

Figure 3: Receiver Operating Characteristic (ROC) classification
performance of each individual event.

N RET CALL D CALL_ID LOAD
AN REEIRERINLLTANSY N\
0.6
0.4
02
o.
gl STORE MISP_BR MISP BR_C MISS_ITLB
<os \
g 0.6 -
5 04
8 02
Lo
S .o MISS_DTLBS _STLB HIT _MISS ICACHE MISS LLC
8 o N\
o 08
< o6 — ———
0.4
02
00§ 1624324048 5664 0 6 1624 32 40 48 5664 O 6 1624 32 40 48 56 64 0 & 16 24 32 40 48 56 64

Minimum Leaked Data Size (KB)

Figure 4: Area Under the Curve (AUC) of individual hardware
events for leaked gaps between 1KB and 64KB.

Figure [2] shows the individual distribution of every event for the
1 million Heartbeat requests recorded. Each plot illustrates the
contrast between the event count distributions of good and bad re-
quests.

As we can see, all hardware events experience a certain level
of overlap between good and bad requests. The degree of over-
lap, however, varies significantly among different events. For some
cases, the overlap is almost indistinguishable, e.g., MISS_ITLB,
CALL_D, and MISP_BR_C; while for others, e.g., MISS_LLC,
RET, LOAD, and STORE, clear differences can be observed. These
plots offer an initial insight about which events might perform bet-
ter when detecting abnormal behavior for this particular Heartbleed
test-case.

5.4 Detection Accuracy

Here we present the performance of classifier based on the indi-
vidual event method and the SVM method.

5.4.1 Individual events

The Receiver Operating Characteristic (ROC) is a graphical plot
used to illustrate the performance of a binary classifier system. The
ROC plot for the normal vs. abnormal classification of each indi-
vidual hardware event is shown in Figure[3] This curve represents
the ratio between the bad cases classified as bad (True Positive) to
the good cases misclassified as bad (False Positive) for different
classification thresholds. Curves appearing above the diagonal rep-
resent positive detection ratios. A common measure to the specific
performance of an individual ROC plot is represented by its Area
Under the Curve (AUC) value.

Table 2: Detection performance of different classifiers.

Classifier Classification Accuracy (%) of different sets

All 1KB 2KB 4KB 8KB 16KB | 32KB
2-class SVM | 92.80 | 94.02 [95.38 [97.01 [98.75 [99.98 | 100
1-class SVM | 70.88 | 73.04 |73.70 |74.68 |74.55 |74.46 |74.41

As expected from the event distribution plots shown in Figure 2]
the events that appeared as hardly discernible show a poor perfor-
mance in the ROC plots. On the other hand, the events that exhib-
ited better-defined differences performed significantly better in the
ROC plots.

We also study the sensitivity of the single-threshold classification
method when good and bad requests are separated by a minimum
leak data size ga;ﬂ ranging between 1KB and 64KB.

As we mentioned in Section [3.1] a single malicious Heartbeat
request can leak up to 64KB. Technically, a request that leaks only
1 byte of data is still considered as a malicious request. How-
ever, since the attacker only controls how much data to leak (up
to 64KB), but not what specific data from the memory or if the data
is OpenSSL related, it is arguable how much data must be disclosed
to the attacker before it is of some use.

Figure[]shows the Area Under the Curve (AUC, an ROC perfor-
mance metric) for each individual event when we vary the gap size
from 1KB up to 64KB. For each gap size represented along the x
axis, we generated the ROC plots and obtained their corresponding
AUC values, which are represented along the y axis.

The AUC graphs shows higher detection accuracy as the gap size
grows for certain hardware events. At 4KB, the AUC score for the
RET, LOAD, STORE, and MISS_LLC hardware events is already
larger than 0.98. It is also noticeable how the classification accu-
racy of some events (e.g., MISS_ITLB, MISS_DTLBS, MISP_BR,
and MISP_BR_C) appears to be immune to different gap sizes.

Overall, the single-event classification method achieved accept-
able performance despite being a simple method. The performance
of the multiple-events/multiple-thresholds classification method is
very similar to the single-event/single-threshold, therefore its per-
formance results are omitted here.

5.4.2 SVM Classification Performance

As described in Section[3] we crafted two implementations of the
SVM algorithm, i.e., one-class SVM and two-class SVM models.
Both implementations used a radial basis function (RBF) kernel
[5].

Table [2] shows the classification accuracy achieved by the SVM
models using information from all 12 hardware events to classify
several different sets of samples. The initial set, labeled as “All”,
includes all samples from the data set. The remaining sets only
contained samples from the gap subsets ranging between 1KB and
32KB. The performance is measured as the percentage of samples
classified correctly for each set.

The results included in Table 2] correspond to a fraining set con-
taining 10,000 samples and a fest set containing the remaining sam-
ples.

Overall, the two-class SVM model showed very good perfor-
mance. In the worst case, including all samples, this model achieved
a 92.8% detection accuracy with a 0.99% false negative rate. On
the other hand, the one-class SVM model did not prove as effec-
tive. For the best case, with a 8KB gap set, it achieved a detection

3We refer to an “X gap” subset as the group of samples only in-
cluding bad samples that leaked X bytes or more (Rsize = Tyize +X
bytes), and all the good samples as (Rsize = Tyize)

RET CALL D CALL ID LOAD
SR
" STORE______MISPBR_____MISP BR C MISS_ITLB
GOOD 3¢ GOOD GOOD
g S B0 i y
o e [=
§ f %‘W Ko | | jE5E X
§ ¥ AN 55050 A,
& MISS_DTLBS STLB_HIT MISS_ICACHE MISS_LLC

0 8 1624 32 40 48 56 64 0 & 16 24 32 40 48 56 61 0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64

Returned Size (KB)

Figure 5: Hardware-event counts scattered plots. Each y axis is
normalized to the range of its individual event.

accuracy of 74.55% with a 0.99% false negative rate. This is due
to the fact that no bad samples are included in the training set for
one-class SVM and that the overlapping between good and bad
samples is significant. The results demonstrate the limitation of
this technique for detecting unknown attacks.

5.5 Hardware Event Subsets

Based on their individual classification accuracy, as shown in
Figures 2] B and] we identified the 6 most effective hardware
events being RET, LOAD, STORE, MISS_ICACHE, STLB_HIT,
and MISS_LLC. Because the processor used in the experiments has
four built-in configurable performance counters, we studied which
subset of four hardware events offered the best performance among
all. For each individual subset, we evaluated the classification ac-
curacy of several leaked data gaps between 1KB and 64KB using
the two-class SVM model.

The results show that subset classification rates improved as the
size of the gap grew larger. For each subset, we computed the aver-
age of their classification accuracy for all tested data gaps. Among
all subsets, the classification average ranged between 96.8% with
the four-event subset of [LOAD, STORE, STLB_HIT, MISS_LLC]
and 97.8% with [RET, LOAD, STLB_HIT, MISS_ICACHE].

We observed that when the size of the data gap was 8KB or
larger, all subsets achieved a detection performance higher than
98%. Although the detection accuracy varied among all subsets,
the difference appears to be marginal (around 1%). On the other
hand, the larger variation in the classification performance among
individual subsets was observed for the smaller gap sizes.

6. HARDWARE EVENTS IN-DEPTH BEHA -
VIOR ANALYSIS

In this section, we conduct a qualitative analysis of the hardware
events studied.

Figure [3] shows the relationship between the returned data size
of a Heartbeat request (R;;.) and its associated individual hard-
ware event count. The good cases cannot request more than 16KB
while bad cases can request up to 64KB. As it can be seen, a linear
relationship is observed between these two parameters for hard-
ware events such as RET, LOAD, and STORE. However, individ-
ual plots of other hardware events, e.g., CALL_ID, MISP_BR, and
MISS_ITLB show a very different reality.

It might be natural to expect a consistent behavior of hardware
events for the same set of operations (e.g., execution of a pro-
gram or a function within a program). However, many factors
affect the way in which programs are executed, e.g., hardware re-

Table 3: Hardware event categories

Instructions Retired

- Loads, Stores

- Indirect Calls, Returns

- Direct Calls

- Branches Taken™"

— Conditional Branches Taken™
Behavioral Memory Operands

Data - Reads™, Writes™

Mispredicted Branches

- Mispredicted Conditional Branches
Last Level Cache Misses

- I-Cache Misses, D-Cache Misses™
TLB Misses

- I-TLB Misses, D-TLB Misses

- Shared TLB Hits after I-TLB Miss

Behavioral
Instructions

Models

sources/configuration, OS internals, etc. As a consequence, the “re-
liability” or “stability”” of hardware events may change depending
on their likelihood of being affected by these factors. Henceforth,
we separate the hardware events used in this study into three cate-
gories as shown in Table J] Some events that we did not monitor
during the Heartbleed experiments are also included (noted by *),
which we studied with a separate set of experiments.

The hardware events contained within what we call Behavioral -
Instructions group show the most stable behavior in Figure[5] This
is somewhat expected since they are mostly deterministic events
that are independent of the context and the state of the hardware.
The second group, which we call Behavioral - Data group, includes
events related to memory accesses. We evidenced a consistent rela-
tionship between these events and the instructions being executed.
‘We observed that not only the instructions but also the list of mem-
ory operands to be processed had a direct impact on the hardware
counters. Overall, this group of hardware events still experiences
relative stability. Finally, we consider the events within what we
call Models group to be platform dependent and not reliable. There
is too much context needed in order to have consistent behavior
and make sense of the data offered by the counters among different
executions. These events are significantly affected by co-executing
programs and by the size and configuration of the cache subsys-
tem. They are also susceptible to how busy the cache subsystem
is at every given moment. Furthermore, these factors change from
machine to machine.

Overall, selecting the right combination of hardware events might
imply a trade-off between accuracy (linked to one specific plat-
form) and portability. If events from the last group are required,
then most likely the model of the program being analyzed must be
built on the same exact platform it will be executed. The first two
categories are less restricted because they should remain consistent
across platforms.

7. NEED FOR MORE ARCHITECTURAL
SUPPORT

The results presented in this work show certain similitudes with
similar detection methodologies applied to control-flow exploits in
previous research [9, [7, [16]. However, the detection effective-
ness of this general methodology varies significantly between data-
oriented and control-data attacks. Detection of the control-data ex-
ploits heavily depends on the assumption that an attack will disturb
the control-flow of the target program. However, such assumptions
do not hold true for data-oriented exploits. In fact, preserving the
normal control-flow of the target program is one of the restrictions
of data-oriented attacks [9].

In previous research, the statistical distribution of the hardware
event counts show remarkable differences between the normal ex-
ecution and the execution during the attack [7,|13]]. For the Heart-
bleed case study, some hardware events show clear separation be-
tween the good and bad cases for higher leakage gaps (leaked gap
> 8KB). However, for smaller gaps (leaked gap < 8KB), the over-
lapping of the statistical distribution of the good and bad cases was
significant, making it very hard to discern between them.

Furthermore, the study presented in Section[f]demonstra-ted that
even though some events showed significant differences between
normal execution and the execution under attack, their stability and
reliability was somehow compromised.

We believe that the incorporation of architectural support would
improve the effectiveness of the methodology studied in this work
and most systems using hardware performance counters. We sug-
gest the following as realistic features that could be included with
future-generation processor architectures:

— Increment the total number of performance counter reg-
isters: This would allow expanding the total number of
hardware events to be monitored simultaneously. It would
provide software components with the possibility of deploy-
ing more advance detection mechanisms. It will also make
it more difficult for an attacker to mimic an attack to have a
hardware events’ footprint as that of the normal execution.

— Expand the number of architectural performance-moni-
toring eventsﬂ: This would increase the reliability of hard-
ware events across different platforms. It would most likely
make some events grouped in the Models category to be less
platform dependent and therefore more reliable among dif-
ferent architectures.

Another aspect that would help the performance of an anomaly
detection scheme is the addition of general classification hardware
resources into new generation processors. We could take advantage
of such built-in feature to conduct online monitoring of software
behavior, based on hardware performance counters with improved
speed and reliability.

8. CONCLUSION

In this work, we conducted a systematic study to determine if
low-level hardware events can be effectively used to identify the
occurrences of buffer over-reads attacks in user space libraries. As
a test case, we studied the Heartbleed Bug, a serious vulnerability
in the popular OpenSSL cryptographic software library.

Our experiments demonstrate that first, with certain limitations,
it is possible to use information collected from hardware events to
detect buffer over-read attacks in user space libraries, OpenSSL in
this case.

Second, an extensive study of hardware events showed that dif-
ferent hardware events experienced different sensitivity to the stud-
ied attack. Hence, monitoring the correct events is key for the per-
formance of the anomaly detection scheme.

Third, non-deterministic events, e.g., last level cache misses,
showed potential for differentiating between normal and abnormal
behavior. However, they also appeared to be susceptible to user
and kernel space activity unrelated to the studied program, there-
fore making them less reliable in uncontrolled environments. In
addition, we present an in-depth qualitative analysis of different
hardware events and classify them into three categories according

“Performance monitoring events are architectural when they be-
have consistently across microarchitectures [|10].

to their “reliability” and “stability”. We analyze which factors con-
tribute to such differences and discuss the limitations of certain type
of events.

Fourth, we employed a Support Vector Machine (SVM) algo-
rithm to implement an anomaly-detection scheme. Results showed
a detection accuracy over 92% for the two-class SVM model and
over 70% for the one-class SVM mo-del. For our case study, the
SVM algorithm proved to have limitations for detecting unknown
data-oriented attacks.

As for future work, we plan to extend the number of hardware
events and derived metrics included in our study, as well as include
other vulnerabilities/exploits to further validate the feasibility of
the proposed scheme. We also want to explore the use of more
sophisticated classification algorithms, including current machine
learning models.

9. REFERENCES

[1] The heartbleed bug. http://www.heartbleed.com.

[2] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay

Ligatti. Control-flow integrity principles, implementations,

and applications. ACM Trans. Inf. Syst. Secur.,

13(1):4:1-4:40, November 2009.

Eep Bhatkar, Daniel C. Duvarney, and R. Sekar. Address

obfuscation: an efficient approach to combat a broad range

of memory error exploits. In In Proceedings of the 12th

USENIX Security Symposium, pages 105-120, 2003.

Varun Chandola, Arindam Banerjee, and Vipin Kumar.

Anomaly detection: A survey. ACM computing surveys

(CSUR), 41(3):15, 2009.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library

for support vector machines. ACM Transactions on

Intelligent Systems and Technology, 2(3):27:1-27:27, May

2011.

[6] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and
Ravishankar K. Iyer. Non-control-data attacks are realistic
threats. In Proceedings of the 14th Conference on USENIX
Security Symposium - Volume 14, SSYM’05, pages 12-12,
Berkeley, CA, USA, 2005. USENIX Association.

[7] John Demme, Matthew Maycock, Jared Schmitz, Adrian

Tang, Adam Waksman, Simha Sethumadhavan, and

Salvatore Stolfo. On the feasibility of online malware

detection with performance counters. In Proceedings of the

40th Annual International Symposium on Computer

Architecture, ISCA *13, pages 559-570, New York, NY,

USA, 2013. ACM.

John Demme and Simha Sethumadhavan. Rapid

identification of architectural bottlenecks via precise event

counting. In Proceedings of the 38th Annual International

Symposium on Computer Architecture, ISCA 11, pages

353-364, NY, USA, 2011. ACM.

Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek

Saxena, and Zhenkai Liang. Automatic generation of

data-oriented exploits. In 24th USENIX Security Symposium

(USENIX Security 15), pages 177-192, Washington, D.C.,

August 2015. USENIX Association.

[10] Intel. Intel 64 and ia-32 architectures software developer
manual. Technical report, Intel, 2013.

[11] Netcraft. April 2014 web server survey.
http://news.netcraft.com/archives/2014/04/02/april-2014-
web-server-survey.html, April
2014.

[3

—

[4

—_

(5

—

[8

—

[9

—

[12]

[13]

[14]

[15]

[16]

Jared Stafford. Heartbleed proof of concept.
https://gist.github.com/10100394, 2014.

Adrian Tang, Simha Sethumadhavan, and Salvatore]. Stolfo.
Unsupervised anomaly-based malware detection using
hardware features. In Angelos Stavrou, Herbert Bos, and
Georgios Portokalidis, editors, Research in Attacks,
Intrusions and Defenses, volume 8688 of Lecture Notes in
Computer Science, pages 109—129. Springer International
Publishing, 2014.

The OpenSSL Project. OpenSSL: The open source toolkit for
SSL/TLS. http://www.openssl.org, April 2003.

Gildo Torres and Chen Liu. Adaptive virtual machine
management in the cloud: A performance-counter-driven
approach. Int. J. Syst. Serv.-Oriented Eng., 4(2):28-43, April
2014.

Xueyang Wang and R. Karri. Numchecker: Detecting kernel
control-flow modifying rootkits by using hardware
performance counters. In Design Automation Conference
(DAC), 2013 50th ACM/EDAC/IEEE, pages 1-7, May 2013.

(171

(18]

[19]

Lichen Weng, Chen Liu, and Jean-Luc Gaudiot. Scheduling
optimization in multicore multithreaded microprocessors
through dynamic modeling. In Proceedings of the ACM
International Conference on Computing Frontiers, CF *13,
pages 5:1-5:10, New York, NY, USA, 2013. ACM.

Waucherl Yoo, Kevin Larson, Lee Baugh, Sangkyum Kim,
and Roy H. Campbell. Adp: Automated diagnosis of
performance pathologies using hardware events. In
Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’12, pages 283-294, New York, NY,
USA, 2012. ACM.

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo
Szekeres, Stephen McCamant, Dawn Song, and Wei Zou.
Practical control flow integrity and randomization for binary
executables. In Proceedings of the 2013 IEEE Symposium on
Security and Privacy, SP *13, pages 559-573, Washington,
DC, USA, 2013. IEEE Computer Society.

	Introduction
	Background
	Hardware Performance Counters
	Anomaly Detection
	OpenSSL
	Heartbleed Vulnerability

	System Architecture/Model
	Heartbeat Good vs Bad Requests
	Detection Module

	Methodology
	Configuration

	Evaluation
	Test Cases
	Overhead
	Hardware Events' Statistical Distribution
	Detection Accuracy
	Individual events
	SVM Classification Performance

	Hardware Event Subsets

	Hardware Events In-depth Beha-vior Analysis
	Need for More ArchitecturalSupport
	Conclusion
	References

