Can Data-Only Exploits be Detected at Runtime Using Hardware Events? A Case Study of the Heartbleed Vulnerability #### Gildo Torres & Chen Liu Department of Electrical and Computer Engineering Clarkson University Hardware and Architectural Support for Security and Privacy (HASP) June 18th, 2016 ### Outline - Background - Control Exploits vs Data Exploits - Hardware Performance Counters - Motivation - Heartbleed Vulnerability - System Architecture - Experiments - Hardware Event distributions - Detection Accuracy - Conclusion ### Background ### **Control Exploits:** - Exploit vulnerabilities using a payload to execute arbitrary code - Hijack control-flow of the victim program ### **Data Exploits:** - Conserve control-flow of victim application - Achieve same level of compromise of target systems ### Hardware Performance Counters (HPCs) #### What are these: - Special HW registers available on most modern processors - Over 200 measurable HW conditions #### **Benefits:** - Very fast to access - Difficult for attackers to manipulate - Capture raw execution behavior ### Motivation #### **Previous research:** - Signature-based detection - Rootkit detection using HPCs to monitor syscalls (Wang DAC'13) - HPCs for detection of malware (Demme ISCA'13, Tang RAID'14) #### This work: How effective is hardware level information for the detection of **Data Exploits**? # Attacks Against TLS/SSL #### **BEAST:** Browser Exploits Against SSL/TLS #### **BREACH:** Leverages HTTP compression attacking HTTP responses #### **POODLE:** Padding Oracle On Downgraded Legacy Encryption #### Logjam: Downgrade to cryptographically weak keys 2011 2012 2013 2014 2015 #### **CRIME:** A side channel attack against compression in HTTPS implementations #### HEARTBLEED: Steal security key from the server with buffer overread #### FREAK: Factoring Attack on RSA-EXPORT Keys # Heartbleed Vulnerability #### What is it? **OpenSSL vulnerability** within heartbeat Extension for the TLS/DTLS protocols #### The problem: Missing check between an advertised request size and the real token size #### **Implications:** Allows malicious party to trick the target into sending more information (memory content) than it should #### How does it work? Mismatch between the real size of a message's token (Tsize) and the size of the payload that is advertised (Rsize). #### Heartbeat request |
Type | Length | Data | | |----------|-----------|------------------|--| | (1 byte) | (2 bytes) | (variable bytes) | | | | Rsize | | | #### Malicious request Leaked data = Rsize - Tsize => 64 KB ### System Architecture ### **Goal:** **Investigate** feasibility of using an **anomaly-based detection** scheme that utilizes information collected from hardware performance **counters** at **runtime** to detect data-oriented attacks in user space libraries ### **Experimental Setup** #### **Platform:** - Intel Core i7-950 (Nehalem, Quad-Core, HT, 3.06GHz) - Linux kernel version 3.8.0 #### **Vulnerability:** OpenSSL version 1.0.1f (Heartbleed) #### **Tools:** Linux Perf_events interface (syscall) #### **Hardware Events monitored:** | Event Name | Description | | |-------------|---|--| | RET | Near return instructions retired | | | MISP_BR | Mispredicted branch instructions | | | LOAD | Load instructions retired | | | MISP_BR_C | Mispredicted conditional branches | | | STORE | Store instructions retired | | | MISS_ITLB | I-TLB misses | | | STLB_HIT | Shared TLB hits after i-TLB misses | | | MISS_DTLB | DTLB-misses | | | CALL_ID | Indirect near call instructions retired | | | MISS_ICACHE | I-Cache misses | | | CALL_D | Direct near call instructions retired | | | MISS_LLC | Last Level Cache misses | | ### Malicious vs Legitimate Distribution Different degrees of overlapping: Some events noticeably different: RET, LOAD, STORE, MISS_LLC Some events barely distinguishable MISP_BR, MISP_BR_C, MISS_ITLB # **Detection Accuracy (1)** # Receiver Operating Curves (ROC) True Positive to False Positive ratio of different classification thresholds Individual performance represented by Area Under the Curve (AUC) Less overlapping of distribution \rightarrow better classification performance # **Detection Accuracy (2)** #### **Area Under Curve** Extended study of classification to leak gap ranging between 1KB - 64KB Minimum Leaked Data Size (KB) Higher detection accuracy as the gap size grows: RET, LOAD, STORE, MISS_LLC Some events **immune** to growing **gap size**: CALL_D, MISP_BR, MISP_BR_C, MISS_ITLB, MISS_DTLBS ### **Detection Accuracy (3)** #### **Support Vector Machine (SVM)** - Two-class SVM: Training set containing both good and bad requests - One-class SVM: Training set exclusively containing good requests | Classifier | Classification Accuracy (%) of different sets | | | | | | | |-------------|---|-------|-------|-------|-------|--------|--------| | Classifier | ≥ 1 byte | ≥ 1KB | ≥ 2KB | ≥ 4KB | ≥8KB | ≥ 16KB | ≥ 32KB | | 2-class SVM | 92.8 | 94.02 | 95.38 | 97.01 | 98.75 | 99.98 | 100 | | 1-class SVM | 70.88 | 73.04 | 73.7 | 74.68 | 74.55 | 74.46 | 74.41 | 0.99% False Negative rate # **Detection Accuracy (4)** #### **Hardware Event Subsets** Studied individual 6 most effective HW events: ``` [RET, LOAD, STORE, MISS_ICACHE, STLB_HIT, MISS_LLC] ``` - Classification rates improved as the gap size grows larger - Classification average: ``` — Worst: 96.8% [LOAD, STORE, STLB_HIT, MISS_LLC] ``` Best: 97.8% [RET, LOAD, STLB_HIT, MISS_ICACHE] # Hardware Events Behavior Analysis | | Instructions Retired | | | | |--------------|---|--|--|--| | | - Loads, Stores | | | | | Behavioral | - Indirect Calls, Returns | | | | | Instructions | - Direct Calls | | | | | | - Branches Taken ⁺ | | | | | | — Conditional Branches Taken ⁺ | | | | | Behavioral | Memory Operands | | | | | Data | - Reads ⁺ , Writes ⁺ | | | | | | Mispredicted Branches | | | | | | - Mispredicted Conditional Branches | | | | | | Last Level Cache Misses | | | | | Models | - I-Cache Misses, D-Cache Misses ⁺ | | | | | | TLB Misses | | | | | | - I-TLB Misses, D-TLB Misses | | | | | | - Shared TLB Hits after I-TLB Miss | | | | Returned Size (KB) ### Conclusions - Experiments suggest that Data Exploits are harder to detect using low-level hardware events - Study showed that different events experienced different sensitivity to the studied attack - Non-deterministic events showed potential for differentiating between normal and abnormal behavior # THANK YOU! QUESTIONS?