Can Data-Only Exploits be Detected at Runtime Using Hardware Events?

A Case Study of the Heartbleed Vulnerability

Gildo Torres & Chen Liu

Department of Electrical and Computer Engineering
Clarkson University

Hardware and Architectural Support for Security and Privacy (HASP)

June 18th, 2016

Outline

- Background
 - Control Exploits vs Data Exploits
 - Hardware Performance Counters
- Motivation
- Heartbleed Vulnerability
- System Architecture
- Experiments
 - Hardware Event distributions
 - Detection Accuracy
- Conclusion

Background

Control Exploits:

- Exploit vulnerabilities using a payload to execute arbitrary code
- Hijack control-flow of the victim program

Data Exploits:

- Conserve control-flow of victim application
- Achieve same level of compromise of target systems

Hardware Performance Counters (HPCs)

What are these:

- Special HW registers available on most modern processors
- Over 200 measurable HW conditions

Benefits:

- Very fast to access
- Difficult for attackers to manipulate
- Capture raw execution behavior

Motivation

Previous research:

- Signature-based detection
- Rootkit detection using HPCs to monitor syscalls (Wang DAC'13)
- HPCs for detection of malware (Demme ISCA'13, Tang RAID'14)

This work:

How effective is hardware level information for the detection of **Data Exploits**?

Attacks Against TLS/SSL

BEAST:

Browser Exploits
Against SSL/TLS

BREACH:

Leverages HTTP compression attacking HTTP responses

POODLE:

Padding Oracle
On Downgraded
Legacy Encryption

Logjam:

Downgrade to cryptographically weak keys

2011

2012

2013

2014

2015

CRIME:

A side channel attack against compression in HTTPS implementations

HEARTBLEED:

Steal security key from the server with buffer overread

FREAK:

Factoring Attack on RSA-EXPORT Keys

Heartbleed Vulnerability

What is it?

OpenSSL vulnerability within heartbeat Extension for the TLS/DTLS protocols

The problem:

Missing check between an advertised request size and the real token size

Implications:

Allows malicious party to trick the target into sending more information (memory content) than it should

How does it work?

Mismatch between the real size of a message's token (Tsize) and the size of the payload that is advertised (Rsize).

Heartbeat request

 Type	Length	Data	
(1 byte)	(2 bytes)	(variable bytes)	
	Rsize		

Malicious request

Leaked data = Rsize - Tsize => 64 KB

System Architecture

Goal:

Investigate feasibility of using an **anomaly-based detection** scheme that utilizes information collected from hardware performance **counters** at **runtime** to detect data-oriented attacks in user space libraries

Experimental Setup

Platform:

- Intel Core i7-950 (Nehalem, Quad-Core, HT, 3.06GHz)
- Linux kernel version 3.8.0

Vulnerability:

OpenSSL version 1.0.1f (Heartbleed)

Tools:

Linux Perf_events interface (syscall)

Hardware Events monitored:

Event Name	Description	
RET	Near return instructions retired	
MISP_BR	Mispredicted branch instructions	
LOAD	Load instructions retired	
MISP_BR_C	Mispredicted conditional branches	
STORE	Store instructions retired	
MISS_ITLB	I-TLB misses	
STLB_HIT	Shared TLB hits after i-TLB misses	
MISS_DTLB	DTLB-misses	
CALL_ID	Indirect near call instructions retired	
MISS_ICACHE	I-Cache misses	
CALL_D	Direct near call instructions retired	
MISS_LLC	Last Level Cache misses	

Malicious vs Legitimate Distribution

Different degrees of overlapping:

Some events noticeably different: RET, LOAD, STORE, MISS_LLC

Some events barely distinguishable MISP_BR, MISP_BR_C, MISS_ITLB

Detection Accuracy (1)

Receiver Operating Curves (ROC)

True Positive to False
Positive ratio of different
classification thresholds

Individual performance represented by Area Under the Curve (AUC)

Less overlapping of distribution \rightarrow better classification performance

Detection Accuracy (2)

Area Under Curve

Extended study of classification to leak gap ranging between 1KB - 64KB

Minimum Leaked Data Size (KB)

Higher detection accuracy as the gap size grows: RET, LOAD, STORE, MISS_LLC

Some events **immune** to growing **gap size**: CALL_D, MISP_BR, MISP_BR_C, MISS_ITLB, MISS_DTLBS

Detection Accuracy (3)

Support Vector Machine (SVM)

- Two-class SVM: Training set containing both good and bad requests
- One-class SVM: Training set exclusively containing good requests

Classifier	Classification Accuracy (%) of different sets						
Classifier	≥ 1 byte	≥ 1KB	≥ 2KB	≥ 4KB	≥8KB	≥ 16KB	≥ 32KB
2-class SVM	92.8	94.02	95.38	97.01	98.75	99.98	100
1-class SVM	70.88	73.04	73.7	74.68	74.55	74.46	74.41

0.99% False Negative rate

Detection Accuracy (4)

Hardware Event Subsets

Studied individual 6 most effective HW events:

```
[RET, LOAD, STORE, MISS_ICACHE, STLB_HIT, MISS_LLC]
```

- Classification rates improved as the gap size grows larger
- Classification average:

```
— Worst: 96.8% [LOAD, STORE, STLB_HIT, MISS_LLC]
```

Best: 97.8% [RET, LOAD, STLB_HIT, MISS_ICACHE]

Hardware Events Behavior Analysis

	Instructions Retired			
	- Loads, Stores			
Behavioral	- Indirect Calls, Returns			
Instructions	- Direct Calls			
	- Branches Taken ⁺			
	— Conditional Branches Taken ⁺			
Behavioral	Memory Operands			
Data	- Reads ⁺ , Writes ⁺			
	Mispredicted Branches			
	- Mispredicted Conditional Branches			
	Last Level Cache Misses			
Models	- I-Cache Misses, D-Cache Misses ⁺			
	TLB Misses			
	- I-TLB Misses, D-TLB Misses			
	- Shared TLB Hits after I-TLB Miss			

Returned Size (KB)

Conclusions

- Experiments suggest that Data Exploits are harder to detect using low-level hardware events
- Study showed that different events experienced different sensitivity to the studied attack
- Non-deterministic events showed potential for differentiating between normal and abnormal behavior

THANK YOU! QUESTIONS?

