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ABSTRACT
The kernel code injection is a common behavior of kernel
-compromising attacks where the attackers aim to gain their goals
by manipulating an OS kernel. Several security mechanisms have
been proposed to mitigate such threats, but they all suffer from non-
negligible performance overhead. This paper introduces a hard-
ware reference monitor, called Kargos, which can detect the ker-
nel code injection attacks with nearly zero performance cost. Kar-
gos monitors the behaviors of an OS kernel from outside the CPU
through the standard bus interconnect and debug interface avail-
able with most major microprocessors. By watching the execution
traces and memory access events in the monitored target system,
Kargos uncovers attempts to execute malicious code with the ker-
nel privilege. According to our experiments, Kargos detected all
the kernel code injection attacks that we tested, yet just increas-
ing the computational loads on the target CPU by less than 1% on
average.

1. INTRODUCTION
These days, more and more attackers endeavor to compromise an

OS kernel on which most of the applications in a system rely. Ma-
nipulating the kernel, attackers are capable of affecting the kernel’s
behavior in almost all aspects, such as the way how kernel objects
are accessed, what data is sent through network, or what permis-
sion a file is accessed with. Unfortunately, like other programs,
OS kernels could have vulnerabilities with which an adversary can
acquire the capability to access their memory arbitrarily. For exam-
ple, the Linux kernel, which is the kernel of the most dominant op-
erating system in the smartphone market [1], is considered to have
unknown vulnerabilities in that new ones are reported every year [2,
3]. Although they have been patched already, the adversaries would
exploit a new one that is not published yet, to compromise a fully
patched system.

A powerful way to compromise a victim kernel with the capabil-
ity is the code-injection attack, so several mechanisms have already
been proposed to detect it with architectural supports. With the ac-
cess to the kernel memory, attackers can deceive the victim kernel
into executing malicious code by placing it in a kernel memory re-
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gion, corrupting some function pointers and manipulating the page
table. To help OS kernels in mitigating the attack, modern pro-
cessors are equipped with architectural supports, such as Supervi-
sor Mode Execution Prevention (SMEP) [4] or Privileged eXecute
Never (PXN) [5]. These supports add a field in page table entries,
and make the Memory Management Unit (MMU) use the field to
decide if an instruction can be executed with the kernel privilege or
not. Utilizing these, several mechanisms have successfully detected
the attacks by protecting the integrity of the page tables containing
the configurations [6, 7, 8, 9, 10].

Although these mechanisms have successfully defeated the code
injection attacks, they inevitably introduce non-negligible perfor-
mance overhead. In order to detect the code-injection attacks with
the new field in page table entries, they should mediate all updates
to the page tables and ensure that only the pages with the legitimate
kernel code are configured to be executable in the kernel mode. If
they omit a single entry, an attacker can corrupt it to inject the ma-
licious code into the kernel by marking it to be executable with
kernel privilege and map the page to a physical memory region
containing the malicious code.

In this paper, we present Kargos, a hardware-based reference
monitor that detects the code-injection attacks without mediating
the accesses to the entire page table. Instead of marking each page
with its permission, Kargos examines the target addresses of indi-
rect branch instructions to detect the first control-flow transfer to
a malicious code block, while the CPU runs in the kernel mode.
In this way, the monitor can ensure that the kernel never executes
with the kernel privilege the instructions from outside the prede-
fined kernel code pages. In addition, Kargos checks if the virtual
pages of the kernel code regions are mapped to the corresponding
physical code regions correctly. Otherwise, the attacker would be
able to remap the kernel code pages into a physical memory re-
gion filled with the malicious code [11]. Combining these two,
the monitor can detect any execution of an instruction that is not
fetched from the legitimate kernel code region while the CPU is in
the kernel mode. For the sake of explanation throughout this pa-
per, we hereafter refer to the virtual pages storing the kernel code
as the virtual code regions and the corresponding physical memory
regions storing the kernel code as the physical code regions.

Even though Kargos needs to examine the target addresses of the
indirect branch instructions, it is not necessary to install our Kar-
gos inside the CPU core. Instead, our prototype is placed outside
the CPU and acquires the values from the Program Trace Interface
(PTI), which most modern CPU possess [12, 13]; in order to help
debugging and profiling programs, the interface can be configured
to continuously emit a stream of packets. Parsing them, Kargos can
incessantly observe the target addresses of indirect branches.

Kargos can also secure the translations of the kernel code ad-
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Figure 1: This figure shows how the hardware modules are con-
nected to the other modules in the system. TrafficMonitor can
examine the accesses to the memory or the memory mapped
peripherals with the connections (a), and TraceMonitor is fed
with the PTI packets through (b). Once one of them recognizes
any violation, they interrupt the CPU to deal with the violation
with (c) and (d). The CPU can access the hardware modules
through (e) and (f), but the modules would accept these accesses
selectively. TraceMonitor forwards some indirect branch target
addresses to TrafficMonitor through (g).

dresses without modifying the CPU core. CPUs usually use the
values of some special registers and the contents of some page table
entries for address translations. For instance, ARM processors have
Translation Table Base Registers (TTBRs) that contain the base ad-
dress of page global directory, and several entries of the directory
are used for translating the kernel code pages. For this reason, it is
enough to protect these values to ensure that the address of kernel
code pages are translated correctly. To mediate the modifications
to the special registers, we first add the instructions that check the
correctness of the updated values, to the code blocks which update
the registers to include. In addition, Kargos ensure that these code
blocks are always executed as designed, by checking if they are ex-
ecuted atomically. Using the outputs of PTI, Kargos can enforce
some code blocks, including the ones to update the special regis-
ters, to be executed atomically. At last, such code blocks can also
be designed to notify Kargos of the new address of the page global
directory. With the value, Kargos can always monitor every access
to the directory entries for the kernel code pages with bus snooping
mechanism [14, 15].

To show the effectiveness and efficiency of Kargos, we have
completely constructed its prototype in hardware to monitor the
Linux kernel of Android 4.2.2 that runs on an ARM-based system.
According to our experiments, Kargos has caught all the kernel
code injection attacks that we tested, yet incurring only about 1%
performance overhead than the original system being left vulnera-
ble to the attacks. In addition, all components of our prototype are
implemented in a physically secure hardware platform operating
independently of the target system such that Kargos can work as
planned even if we assume that an adversary is able to access any
memory regions in the target system including the kernel code and
page tables.

The rest of this paper is composed as follows. In Section 2, we
describe the threat model that Kargos aims to mitigate and the as-
sumptions. On top of these, we present the design of Kargos in Sec-
tion 3 and evaluate our mechanism in Section 4. After discussing
the limitations and future work in Section 5, we compare our work
with the related work in Section 6 and conclude this paper in Sec-
tion 7.

2. PROBLEM DEFINITION
This section describes the threat model and the assumptions for

Kargos, in order to define the scope of this work.

2.1 Threat Model
In this work, we consider adversaries who inject their code and

hijack the kernel control-flow to execute the injected code in the
privileged mode. The adversaries are hereby assumed to know of
an OS kernel vulnerability (e.g., CVE-2014-3153 [2]) which they
can exploit to access the victim’s memory arbitrarily. With this ca-
pability, they are able to put their own code into the kernel memory
and redirect a control-flow of the kernel to the code. The OS kernel
may try to defeat the attack using architectural support like PXN
or SMEP, but such powerful adversaries can circumvent them by
overwriting the page table entries, unless the entire page table is
protected from such a corruption.

On the other hand, we assume that adversaries do not have phys-
ical access to a victim machine and the machine contains no ma-
licious hardware. In other words, we rule out any kind of physi-
cal attacks as most previous work on kernel-independent security
solutions do. On top of the assumptions about benign hardware,
we add one more that our target system employs secure boot (or
trusted boot) [16] to load the correct OS kernel image at bootstrap.
Thanks to the secure boot, we assert that Kargos can safely collect,
before the OS starts, the information about the kernel necessary for
its monitoring job.
2.2 Assumptions

Kargos does not require the target system to have another priv-
ilege higher than the OS kernel for virtualization support, or the
special CPU architecture for harboring the secure world. However,
it still has some requirements. First of all, the target system CPU
is assumed to have PTI, which in fact corresponds to the program
trace macrocell (PTM) in ARM processors [12] or the processor
trace in Intel x86 processors [13]. Luckily, modern processors to-
day normally employ such hardware debug features, so we deem
that this is a reasonable assumption. In addition, the target ad-
dresses coming out of PTI are assumed to be virtual addresses,
which is indeed true for most PTIs in real machines. Lastly, the
CPU may have a capability of controlling the interface but only by
either executing some special instructions or accessing memory-
mapped registers of the interface.

3. DESIGN
To detect the kernel code injection attacks, Kargos watches the

memory traffic and the PTI outputs to examine the memory ac-
cesses and the execution traces of the target system. In addition,
the target system kernel is augmented to notify some events, such
as special register updates or mode switches, and Kargos ensures
that the augmented code blocks are executed correctly by checking
if they are executed atomically or not. For the rest of this section,
we first briefly describe the architectural supports which Kargos
is equipped with, then more details will follow as to how Kargos
detects the kernel code injection attacks with these supports.

3.1 Architectural Supports
As shown in Figure 1, Kargos is composed of two modules,

TraceMonitor and TrafficMonitor. Each module has its own memory-
mapped control interface connected to the CPU through the inter-
connect. At boot time, the kernel can initialize the modules through
the interfaces, and can also pass various information such as the
special register values during runtime. Nevertheless, no attacker
can corrupt the configurations of the modules because each inter-
face can be locked at boot time. Once locked, no software compo-
nent running on the CPU can unlock them unless the entire system
reboots. Because a reboot would make the system load a clean
kernel image, an attacker would not be able to corrupt the configu-
rations of the modules.



3.1.1 Trace Monitoring
The first architectural support is the trace monitoring,

which enables Kargos to examine the indirect branch target ad-
dresses. Being originally designed for an external debugger to
completely reconstruct the execution flow, PTI provides packets of
information about the executeion trace. Specifically, an external
debugger can calculate the target addresses of the indirect branches
from the packets. As mentioned in Section 1, Kargos only needs
the target addresses of indirect branch instructions, as the targets
of direct branches can be statically analyzed and acquired. For this
reason, TraceMonitor parses only the packets required to calculate
the indirect branch target addresses.

Figure 2 shows the main components of TraceMonitor. The
Packet Parser generates a stream of indirect branch target addresses
from the outputs of PTI, and the other four components take this
stream as an input and examine it. Among the components, Bound-
ary Checker is what detects the jump to the malicious code while
the CPU is in the kernel mode. It has a set of registers that con-
tain the addresses of bases and bounds of the kernel code regions.
By comparing the incoming indirect branch addresses with these
values, TraceMonitor can determine if the CPU tries to run code
fetched from outside the virtual code regions.

The second module is the Mode Tracker, which is mainly re-
sponsible for recognizing the mode switches. Located outside the
CPU, neither TraceMonitor nor TrafficMonitor can directly access
the CPU to acquire the mode information. For this reason, we im-
plemented our system in a way that TraceMonitor can track the
CPU mode switches using some special execution traces. More
details about how we could generate such special execution traces
securely will be presented in Section 3.2.2. From the special traces,
TraceMonitor can acquire the mode information securely.

The third module is Reporting Helper. To help TrafficMonitor
to distinguish malicious reports of special register updates from the
benign ones, this module selectively forwards some indirect branch
target addresses to TrafficMonitor. In specific, the module forwards
the target addresses of jumps to and from the code blocks which
update the special registers for the address translations. Section ??
describes how TrafficMonitor uses these addresses to handle the
incoming reports.

The last module of the TraceMonitor is Atomicity Checker, which
enables the kernel to implement Atomic Code Blocks. Once atomic
code blocks are realized in the kernel, this module is configured
with the location information of the atomic code blocks, and checks
if the CPU jumps to the middle of an atomic code block. Unlike
the Boundary Checker, this module is not configured with the range
of each code block mainly due to the scalability; the kernel can be
built to be composed of a small number of code regions without dif-
ficulty, but could have an arbitrary number of atomic code blocks.
For this reason, the Atomicity Checker uses (1) the ranges of re-
gions containing the atomic code blocks and (2) the alignments to
define the locations and boundaries of the code blocks. For each
incoming indirect branch target address, Atomicity Checker first
checks whether the target of the jump is in one of the memory
pages containing the atomic code blocks not. If it is a jump to
an atomic code block, Atomicity Checker checks if the address is
correctly aligned, to prevent the CPU from jumping to the middle
of an atomic code block. For instance, if the size of atomic code
blocks in the region is 256 bytes, Atomicity Checker would check
whether the lower eight bits of the target address are zero or not.
In this way, the kernel can define a set of memory regions contain-
ing atomic code blocks and Atomicity Checker can ensure that the
code blocks are executed atomically.

PTI
PTI Packets

Packet Parser

Addresses

Atomicity Checker

Boundary Checker

Reporting Helper TrafficMonitor

Mode Tracker

Figure 2: This figure shows the main components of Trace-
Monitor. The components that forward the addresses from PTI
to TraffcMonitor and that generate an interrupt are omitted,
and the functionality of each component is described in Section
3.1.1.

3.1.2 Traffic Monitoring
The second support for Kargos is the traffic monitoring, with

which it can detect the malicious modifications to the kernel mem-
ory. Following the design presented in earlier work [14, 15], Traf-
ficMonitor snoops the traffic between the interconnect and the mem-
ory, to detect any write accesses to the main memory, as depicted in
Figure 1. Because any write accesses from the CPU to the caches
make the corresponding cache line dirty and the dirty line will even-
tually be evicted to the memory, attackers cannot modify the mem-
ory contents without generating the corresponding traffic between
the interconnect and the memory. In addition, because it is imple-
mented in hardware, TrafficMonitor never misses any of the traf-
fic. Note that TrafficMonitor can examine the memory accesses
from the peripherals as well, including the Direct Memory Access
(DMA), as there is no way to access the memory without using the
link between the memory and the interconnect.

To define the protected memory regions, TrafficMonitor has a
set of base and bound registers. For each memory access to the
main memory, TrafficMonitor uses the values of these registers to
check if the access is a write to the protected region. For instance,
the registers should contain the bases and bounds for the physi-
cal code regions to detect the malicious modifications to the kernel
code including the atomic code blocks for special register updates,
and those of the page global directory entries for the virtual code
regions to protect them from being remapped. While the registers
for the kernel code regions can be configured at boot time, the oth-
ers should also be updated at runtime using the reports from the
kernel because it changes the active page table by updating the cor-
responding special registers in the CPU.

In addition to the memory protection, TrafficMonitor is also ca-
pable of distinguishing fake reports from the genuine ones, which
should be generated by a particular code block. Otherwise, the at-
tackers would be able to generate a fake report to deceive Kargos
into protecting a wrong memory region. As they are assumed to
have an arbitrary access to the kernel memory, they may also be
able to alter the values of the control registers in the devices. If so,
such attackers would be able to deceive our system without diffi-
culty, by accessing the control registers for the reports.

To ensure that a report is generated by the corresponding code
block, TrafficMonitor generates a nonce which the code block should
include as a part of the report. In addition, TrafficMonitor updates
the corresponding registers with the incoming report only when it
recognizes the execution of the corresponding code block, through
the indirect branch target addresses from TraceMonitor. If the code
block is designed to raise an alarm when it fails to fetch the nonce,
attackers would not be able to deceive TrafficMonitor into updat-
ing the bases and bounds of the protected region with a fake report.
Section 3.2.1 includes how Kargos uses this protocol and how the
kernel implements a correct code block to generate the report.



3.2 Detection Mechanism
This section describes how Kargos detects the code-injection at-

tacks using these architectural supports, beginning with the four
rules that the system should comply with at runtime and that Kar-
gos checks to detect the attacks.

• R1. The physical code regions of the kernel should never be
modified.

• R2. The CPU jumps to an address in the virtual code regions
when it enters privileged mode.

• R3. All the targets of indirect jumps lie in the virtual code
regions while the CPU is in privileged mode.

• R4. All of the virtual code regions are mapped to the physical
code regions. In other words, the CPU translates an address
of a virtual code region into an address of a physical code
region.

The target system CPU would not execute in privileged mode the
injected code as long as it complies with these four rules. Owing
to R3, if the CPU executes an instruction from the virtual code re-
gions in privileged mode, the next one shall also be from the region.
As it is possible to statically calculate all of the target addresses of
direct branches and examine the instructions at the boundaries of
the kernel image, we can ensure the following; if the CPU executes
an instruction from the virtual code regions that is not an indirect
branch, then the next instruction will be fetched from the virtual
code regions. As the CPU must fetch the first instruction from
the virtual code regions when entering privileged mode (R2), the
CPU cannot execute any instruction from outside the virtual code
regions when in privileged mode. Consequently, to execute injected
code without violating R2 and R3, an attacker should either make
changes to the physical code regions to which the virtual ones are
mapped, or remap a virtual page in the virtual code regions into an
arbitrary physical page, which contains the injected code, that is
outside the physical code regions. As the former violates R1 and
the latter does R4, we can conclude that it is not possible to per-
form a kernel code injection attack that complies with all the rules
at the same time. Kargos can therefore recognize any sort of code-
injection attacks if it is capable of detecting any attempt to breach
the rules.
3.2.1 Securing the Kernel Entrance

To secure kernel entrances (R2), it is sufficient to ensure that
the target system CPU jumps to the gateway code blocks when-
ever it enters privileged mode. Designed to be executed at that
moment, these code blocks preserve the CPU states of the appli-
cations, examine the status registers to determine the reasons for
mode switches, and establish the execution environment for the ker-
nel. To calculate the addresses of the gateway code blocks, CPUs
usually use the values of certain special registers, which we call
gateway registers. For example, the Linux kernel for ARM CPUs
has six gateway code blocks to handle system calls, interrupts and
exceptions. To calculate the addresses of the blocks, the ARM
CPUs use the values of the system control register (SCTLR) and
the vector base address register (VBAR).

Kargos protects the gateway register values, which the attackers
should modify in order to deceive the CPU into jumping to mali-
cious code when it enters privileged mode. As the user applications
should not be able to modify these values, the kernel in general has
to execute certain special instructions, which can only be executed
in privileged mode. To update the gateway registers of the ARM
CPUs, for example, the kernel should execute the MRC instructions
with some predefined operands [5]. If we can force the kernel to
regulate all executions of the special instructions, attackers would

1 sub pc, pc, #4
2 check_entries r0
3 bne handler
4 l d r r4, nonce_addr
5 wait_for_nonce:
6 l d r r5, [r4]
7 cmp r5, #0
8 beq wait_for_nonce
9 s t r r5, [r4]

10 s t r r0, [r4]
11 dsb sy
12 mcr p15 , 0, r1, c13 , c0, 1
13 i s b
14 mcr p15 , 0, r0, c2, c0, 0
15 i s b
16 pop {r4, r5, r6, r7}
17 o r r lr, lr, #0xc
18 bx lr

Figure 3: This figure shows how the kernel follows the report-
ing protocol. Before checking the entries, the kernel executes
an indirect branch instruction with which TrafficMonitor rec-
ognizes the execution of this block. If the checking operation
fails, the kernel invokes a predefined handler at line 3. From
line 6 through line 8, the kernel waits for a non-zero nonce to
become available, writing the nonce and the report the address
of the new page global directory and the nonce to the corre-
sponding control register.

not be able to corrupt the gateway registers. We augmented the
kernel in a way that checks all the operands in the special instruc-
tions prior to its execution. This is done by executing the checking
instructions before the execution of the special instructions.

However, the kernel cannot check all of the executions without
additional hardware support, as it cannot prevent the CPUs from
jumping to a particular address, especially to the special instruc-
tions. While the CPUs usually allow the kernels to disable ex-
ceptions or interrupts for atomic operations, they do not provide
a means to prevent control-flow transfers to a particular set of ad-
dresses. If the kernel does not prevent these jumps to the special
instructions, an attacker would be able to bypass the checking in-
structions and execute the special instructions, even if the check-
ing instructions are directly followed by the special instruction. To
deal with this type of conceivable attack, Kargos uses the archi-
tectural support for the atomic code blocks, which is presented in
Section 3.1.1. With the support, Kargos can guarantee that the spe-
cial instructions always follow the checking instructions directly.
3.2.2 Detection of the Malicious Jumps

In order to recognize violations of R3, Kargos should be able to
examine the indirect jumps. This is achieved with the help of Trace-
Monitor. At boot time, the kernel configures TraceMonitor with the
ranges of the virtual code regions so that it can distinguish jumps
to these code regions from the ones to the other regions. However,
TraceMonitor must also determine whether the CPU is in privileged
mode or not so that it can ignores all jumps when the CPU runs in
the user mode. As presented in Section 3.1.1, TraceMonitor is able
to recognize the mode switches, if the kernel follows a special con-
trol flow when and only when the CPU enters or exits privileged
mode. From such distinguishing traces of indirect jumps, Mode
Tracker would be able to recognize the mode switches. Given that
the kernel has already been enforced to execute the gateway code
blocks when it enters the privilege mode, Mode Tracker considers
the jumps to those code blocks as signatures of mode switches from
the user to privileged mode.

Similarly, OS kernels in general have several special code blocks
that restore the CPU states of user applications and switch the CPU
mode to the user mode. However, jumps to these exit code blocks



1 msr SPSR_fsxc , r1
2 and r3, r1, #31
3 cmp r3, #16
4 subeq pc, pc, #4
5 restore_context
6 movs pc, lr ; this may switch the mode

Figure 4: This shows how the kernel is modified to generate
a special control-flow in an exit code block. After updating the
SPSR with the value in r1, we added three instructions to check
the value in r1 and generate an indirect jump if the mode field
is set to the user mode.

cannot be the signs of mode switches from privileged to user be-
cause the execution of the block may not always cause such a mode
change. For example, the exit code blocks of the Linux kernel for
ARM CPUs use movs instructions to switch the CPU mode to the
user mode only when the mode field of the saved program state
register (SPSR) is set to user. If not, the movs instruction does not
change the CPU mode to user. For this reason, we augmented the
kernel to follow a special control flow only when it returns to the
user mode, whereas it follows the original control flow otherwise.
In detail, the kernel checks the value of the SPSR before execut-
ing the movs instruction and executes an additional indirect jump
instruction only when the mode field of the SPSR is set to user.
This additional instruction generates a trace that Mode Tracker can
consider as the sign of the mode change event. With this additional
signature, Mode Tracker can recognize the mode switch from priv-
ileged to user. Figure 4 shows how the signature for a Linux kernel
running on an ARM processor is generated.

3.2.3 Protection of the Mappings
Although we could avoid protecting all page tables in the target

system, Kargos has to protect the page table entries which map the
virtual code regions into the physical code regions, due to the Ad-
dress Translation Redirection Attack (ATRA) [11]. To protect these
entries (R4), we make use of TrafficMonitor to examine every ac-
cess to the entries. However, examining all these entries in the tar-
get system is not desirable as most systems maintain a set of such
entries for each process. Instead, Kargos protects only the entries
of the page tables currently in use. In specific, the kernel checks
the page table entries of a process whenever it becomes active. The
kernel can check all such events by executing the checking instruc-
tions before executing the special instruction to update the active
page table. Using the hardware support for atomic code blocks,
we can also ensure that the kernel never uses a page table without
checking the mappings from virtual into physical code regions. In
the atomic code blocks that update the registers, the kernel also pro-
vides TrafficMonitor with the physical addresses of the new entries
that should be protected from the modifications. In addition, the
code block is implemented to comply with the protocol presented
in Section 3.1.2 to be resilient to the fake reporting attack. Figure 3
shows how the code block generates a report which TrafficMonitor
would accept as a genuine one.

3.2.4 Code Protection
To detect violations of R1, the kernel should examine all mem-

ory accesses to the physical code regions. Although kernels can
rely on the MMU to examine the accesses and detect malicious
modifications, this requires the kernel to have the means to protect
the integrity of all page tables in the system. Otherwise, attackers
would corrupt the page tables to deceive the MMU and modify the
physical code regions without being detected [6, 8]. Kargos does
not require the entire page tables to be protected, as it can detect
the write accesses to the physical code regions with their physical
addresses, using TrafficMonitor.

Name Baseline Kargos

null syscall 0.98µs 1.07µs (0.92%)
open/close 18.39µs 18.15µs (-1.28%)
select 4.58µs 4.57µs (-0.11%)
sig. handler install 2.81µs 2.82µs (0.11%)
sig. handler overhead 9.91µs 10.55µs (6.42%)
pipe 40.89µs 43.23µs (5.72%)
fork+exit 2853.15µs 2838.60µs (-0.51%)
fork+execve 9279.8µs 9159.16µs (-1.3%)
page fault 4.34µs 4.45µs (3.63%)
mmap 84.7µs 84.9µs (0.24%)

Table 1: LMBench results

4. EVALUATION
To evaluate the effectiveness and the efficiency of Kargos, we

have implemented a full-system prototype on the Xilinx ZC 702
evaluation board which includes Xilinx Zynq Z-7020 [17], on which
an ARM-based system can be developed. the hardware modules are
developed in Verilog HDL and mapped on the FPGA. Since the tar-
get system employs ARM NIC-301 AXI network interconnect, all
the modules in Kargos are also designed to comply with the corre-
sponding ARM AMBA 3.0 specification. Mainly due to the speed
limit of FPGA, we configured Kargos to operate at 80 MHz, and
also scaled down the clock speed of the target system to 222 MHz,
complying with the performance ratio between the host and the co-
processors in most SoC platforms such as application processors
of modern smartphones [18].

On top of this SoC, we ran Android 4.2.2 with the Linux ker-
nel 3.8.0 from the iVeia’s git server [19] as the operating system.
While we used the Android framework as it is, we modified the
Linux kernel in order to implement the atomic code blocks for the
special instructions. Specifically, we enclosed and relocated two
types of instructions to secure the kernel entrances and the address
translations, as presented in Section 3.2.1 and Section 3.2.3, respec-
tively. To secure the entrances, we created six atomic code blocks
for the instruction modifying SCTLR. As the baseline system does
not use VBAR to calculate the addresses, we did not need to pro-
tect it from malicious modifications. To protect the mappings, we
enclosed four instructions modifying Translation Table Base Reg-
ister (TTBR), which contains the base address of the page global
directory in use. Because the kernel does not contain any special
instructions for accessing PTM, we did not consider the case.

4.1 Performance
To evaluate the performance overhead that Kargos introduces,

we initially used LMBench [20] to measure the performance of the
operating system services. We used the script that is included in
the benchmark suite to assess the performance impact on the la-
tencies of the operating system services, as shown in Table 1. The
reported values are the averages of 10 runs. As shown in the table,
the performance impact of Kargos was negligible.

In addition to the microbenchmarks, LMBench, we also ran SPECint
2006 to evaluate the impact of our scheme on user-level applica-
tions. As shown in Table 2, the performance impact on SPEC is
negligible. This suggests that our scheme would not degrade CPU-
intensive workloads running as user-level applications.

Lastly, we ran five real-world Android benchmarking applica-
tions as shown in Table 3. All the results presented here represent
the average values over 10 runs. As can be seen in the table, Kargos
places less than 1% computational loads on average upon the target
system, thanks to our architectural supports.

4.2 Security
As described in Section 2, we consider an attacker who exploits



Name Baseline Kargos

400.perlbench 12097.99s 12121.52s (0.19%)
401.bzip2 7284.54s 7274.29s (-0.14%)
403.gcc 2420.82s 2429.91s (0.38%)
445.gobmk 13412.38s 13542.57s (0.97%)
456.hmmer 15327.28s 15385.06s (0.38%)
458.sjeng 17000.11s 17051.94s (0.3%)
462.libquantum 42659.18s 42753.94s (0.22%)
464.h264ref 18785.86s 18841.65s (0.3%)
471.omnetpp 10334.19s 10382.46s (0.47%)
473.astar 7717.71s 7684.35s (-0.43%)
483.xalancbmk 11235.73s 11257.41s (0.19%)

Table 2: SPECint 2006 results. Among twelve benchmarks in
SPECint 2006, our baseline system could not run 429.mcf due
to the lack of memory.

Name Baseline Kargos

RL 607.90 610.82 (0.48%)
CF-Bench 531.80 527.80 (0.75%)
GeekBench 67.20 67.00 (0.30%)
Linpack-single 9.01 8.96 (0.64%)
Vellamo-metal 121.80 121.40 (0.30%)

Table 3: Android benchmark results.

a vulnerability of the kernel to acquire the capability of accessing
the victim system memory arbitrarily in order to perform the ker-
nel code injection attacks. For subverting our target system, such
attackers can exploit a real-world vulnerability of Linux kernel,
which has been reported as CVE-2014-3153 [2]. To test the effec-
tiveness of Kargos, we wrote three Proof-of-Concept (PoC) attacks
exploiting the vulnerability because we could not find any publi-
cally available kernel code injection attack on ARM-based systems
leveraging the vulnerability. The first attack aims to execute its
own code through modifying the physical memory regions, and the
second one writes to its own page table to remap the virtual code
regions. As both of them generate write attempts to the memory
regions that the TrafficMonitor is monitoring, Kargos was able to
detect the attacks without difficulty. The last attack is designed to
hijack the kernel execution flow to already-injected code without
modifying the kernel code regions or the page tables for the vir-
tual code regions. As the hijacking inevitably causes a jump to
addresses outside the virtual code regions, the TraceMonitor raises
an alarm when it receives the trace that corresponds to the jump
from the PTI. It is worth noting that the only difference between
our PoC attacks and the publically available examples of kernel
rootkits on packetstormsecurity.com, which inject their code to the
kernel, are the way how they achieve the capability of accessing
the kernel memory. While the public examples are implemented as
kernel modules to manipulate the kernel code and data, ours exploit
a real-world vulnerability of the kernel to achieve the capability.

5. LIMITATIONS AND FUTURE WORK
Code Reuse Attacks. While code injection has been a common

way of control-flow hijacking, it has been lately discovered [21,
22] that adversaries can hijack the kernel execution flow without
executing injected code in privileged mode at all. Instead, the ad-
versaries can try a different breed of attacks, known as code reuse
attacks (CRAs), where they reuse a set of kernel code snippets
to implement the functionality they want, and redirect the execu-
tion flow to their chain of code snippets. Being designed to detect
the execution of injected code, Kargos is not capable of catching
CRAs. However, this limitation should not undermine the efficacy
of Kargos for two reasons. First, the attackers cannot undermine

Kargos even if they have successfully executed their CRA payload.
Second, Kargos would be able to combined with the previously
proposed mechanisms to mitigate the CRAs using the trace inter-
faces [23, 24]. While these mechanisms rely on the OS kernel to
make use of the PTIs, Kargos would enable them to use the PTIs
without relying on the kernel and to monitor the traces of the ker-
nel.

Kernel Modules. Modern kernels are allowed to load the ker-
nel modules to extend their code at runtime. Although the current
design of Kargos assumes that the code regions remain unchanged,
the design can be enhanced to allow the target kernel to load the
modules. In addition, it would be possible for the enhanced Kar-
gos to decline an attempt to extend the kernel with a maliciously
crafted module as long as Kargos has a set of cryptographic hashes
of the known good modules. In order to load a kernel module, the
kernel should send a request to Kargos to adjust the current virtual
code regions, physical code regions and page tables. Otherwise the
execution of the extended code will raise an alarm. Upon receiv-
ing the request, Kargos will firstly include the module image to the
physical code regions to detect the attempt to modify the image.
Consequently, the image becomes neither writable nor executable
during the verification process through the hash. Once the module
is confirmed to be a known-good one, Kargos then checks the im-
age again to find if it contains the special instructions. After this
verification process, Kargos can safely extend the virtual code re-
gions to permit the CPU to execute the kernel module.

6. RELATED WORK
Page Table Protection As mentioned in Section 1, several mech-

anisms [6, 7, 8, 9, 10] have been proposed to protect the page ta-
ble utilizing the recent hardware supports such as PXN or SMEP.
By protecting the page tables, they could detect the kernel code
injection attacks effectively, but they inevitably introduced non-
negligible performance overhead. Compared to these mechanisms,
Kargos can defeat the attacks with smaller performance overhead,
by avoiding the protection the entire pare tables.

Hypervisor-based Approaches With the higher privilege than
the OS kernels, hypervisors in general are capable of investigat-
ing the kernel memory and intervening the kernel events. Using
these capabilities, many mechanisms have been proposed to pro-
tect the kernel with the hypervisors. Among them, SecVisor [25]
and NICKLE [26] are closely related to our work in that their main
goals are also to detect kernel code injections. SecVisor protected
and augmented the page tables whenever the CPU enters or ex-
its the kernel to simulate the PXN/SMEP, as those supports were
not available then. NICKLE emulated the Havard Architecture,
where the code memory and data memory are strictly separated,
by intervening the instruction fetches. Due to the lack of hard-
ware supports, these mechanisms have higher performance over-
head when compared with Kargos or the recent mechanisms using
PXN/SMEP.

Snapshot Analyses Another direction of the mechanisms to pro-
tect the kernel has been the Snapshot Analysis. Using either a
dedicated hardware or hypervisor, it is possible to implement a
monitor which acquires the snapshots of the kernel memory pe-
riodically and analyzes them to detect the anomalies. The earlier
ones have focused on protecting the kernel code from being cor-
rupted [27], but recent ones have checked the Control-Flow In-
tegrity (CFI) [28, 29], by examining the function pointers in the
kernel memory. These mechanisms would be able to detect the
code-injection attacks if they corrupt the function pointers, but very
recent work [30] suggested that a dynamic hook, which hijacks
the execution flow without persistently altering any control data,



would successfully evade these control data detection schemes. Al-
though OSck [28] has a potential to detect dynamic hooks, they did
not present a specific scheme that can handle all kinds of dynamic
hooks on the kernel.

Bus Snooping As mentioned in Section 3.1.2, the idea of bus
snooping is not new and already proposed as a means to watch the
accesses to the kernel memory [14, 31, 32]. However, they have
focused only on the detection of the malicious modifications to the
kernel memory, and could not detect the code-injection attacks ef-
fectively. In particular, they could detect code injection attacks that
corrupt the physical code regions or some function pointers that
they are monitoring. Unlike these mechanisms, Kargos can detect
any type of kernel code injection attacks.

Debug Interfaces The idea of using the debug interface (i.e., PTI
in our work) for different purposes other than its intended usage has
already been introduced and explored in several other studies, es-
pecially in the field of fault-tolerant computing [33, 34]. Fidalgo
et al. [33] proposed a mechanism that can inject faults to the tar-
get system by accessing internal resources such as registers and
memory via the interface. Another study presented an on-line fault
detection technique that utilizes the interface to retrieve runtime
information in a non-intrusive way [34]. Lately Lee et al. [35] dis-
cussed how the interface can be used to enhance the security of a
system. They used the interface to transfer the internal cache data
from the CPU into their external security device for memory traffic
monitoring. Lastly, as mentioned in Section 5, the mechanisms to
detect CRAs using the PTI outputs have also been proposed [23,
24]. These studies are conceptually similar to ours in that they ex-
ploit information flow that comes out of the debug interface without
affecting the architecture of the CPU. However, none of these sug-
gested the use of the interface to protect the OS kernel against the
code injection attacks.

7. CONCLUSION
This paper presented Kargos, the first mechanism to detect all

kernel code injection attacks without mediating all accesses to the
page tables. While existing solutions either detect only certain
forms of the attacks or consume considerably the computing re-
sources on the CPU, Kargos detects all the attacks with nearly zero
performance cost. In our design, we provide mechanisms, called
the atomic code blocks and the reporting protocol, for Kargos to
protect the integrity of special register in the CPU and to extract
the values of them without relying on the service of the OS ker-
nel. Unlike the hypervisor or any other software that runs on the
CPU, our external hardware components technically has no means
to access these registers directly.
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