Architectural Supports to Protect OS Kernels
from Code-Injection Attacks

Hyungon Moon, Jinyong Lee, Dongil Hwang,
Seonhwa Jung, Jiwon Seo and Yunheung Paek
Seoul National University

18 o Son

@ Applications rely on the OS kernels

APP Screen
APP 0 “ ‘ll‘ ‘. .~ Keyboard
APP Files

@ SEOUL)
UNERSITY OR

Operating systems are vulnerable Nﬁ,

© New vulnerabllities reported every year
= CVE-2013-2094 (S. Vogl et al., 2014)
= CVE-2014-3153 (TowelRoot)
» CVE-2015-3636 (PingPongRoot)

® Adversaries may
» Read from the memory regions for the kemel
= Write to the memory regions for the kemel

® With the capabillities,
» Hiding Processes, files, or network connections
» Priviege escalation
= Execute their code while the CPU in the kemel mode

& UNIVERSITY

A powerful type of attack‘: code-injection

® Handling a read system call

= Supervisor call handler
—> Sys_read

» The address of sys read written in
the system call table

®© Attackers can
» Write their code into the kemel's memory
= Manipulate the system call table

® Consequence
» mal_sys read replaces sys_read

SEOUL
NATIONAL

Kernel Memory

System Call Table

Supervisor Call Handler

sys_read

mal_sys_read

Sor

Existing mechanisms effective Elﬁ

———

® Privileged eXecute Never (PXN)

= Aflag in the page table entries
= MMU prevents the execution of memory pages with PXN=1

® Page Table Protection = No Code-Injection Attack

Physical Memory

Kernel Code

User Frame

Virtual Page

@ SEOUL 5
e OR

Kargos overview Eﬁ

® Goal
» Mitigate the kemel code-injection attacks with minimal performance cost

@ Threat Model

» Adversaries can read from/write to the kemel memory arbitrarily

® Mechanism

» Dedicated hardware support
- Traffic Monitor
- Trace Monitor

= Minimal kemel instrumentation
- Special execution traces
- Special register protection

@ UNIVERSITY

SEOUL
NATIONAL

R1. The physical code regions of the kernel
should never be modified

Virtual Memory Physical Memory

Physical Code
Regions

Virtual Code
Regions

/ Son

SEOUL
NATIONAL

@ UNIVERSITY

R2. The CPU jumps to an address in the
virtual code regions when entering the kernel

Virtual Memory Physical Memory

Physical Code
Regions

Virtual Code
Regions

¢ Son

SEOUL
NATIONAL

@ UNIVERSITY

R3. All indirect branch targets lie in the virtual
code regions while the CPU is in the kernel mode

Virtual Memory Physical Memory

Physical Code

Regions

Virtual Code
Regions

’ Son

R4. All virtual code regions are mapped
to the physical code regions.

Virtual Memory Physical Memory

Physical Code
Regions

Virtual Code
Regions

% SEOUL 10
s OR

Why the four rules prevent the attacks

®© R1: attacker’s code should be outside the physical regions
® R2 & R3: PC points to the virtual code regions
® R4: Virtual code regions never mapped to the attacker’'s code

Virtual Memory Physical Memory

Physical Code
Regions

Virtual Code
Regions

Attacker’s code

BR SEOUL 11
ek OR

Trace monitoring Eﬁ

© Need to monitor the virtual addresses that the CPU jumps to

Trace MONItOr < ====eeee— e ———————— :

Trace Interface
CPU

}
< 1 Interconnect >

Memory Controller p=—> Memory

® Our Implementation:
» Parses the ARM’'s PTM packets

SEOUL 12
e OR

Traffic monitoring mﬁ,

© Need to know the physical addresses that the CPU writes to

Trace Interface

CPU
-~ Traffic Monitor l

< 1 Interconnect >

Memory Controller p=—> Memory

® Our implementation:
» Examines the traffic complying with the AXI protocol

@ Naturally detect the violations of R1

SEOUL 13
ONNERSITY OR

Rule 2: Kernel entrance

® The gateway code blocks

Vector Table Exception
Handler

@ Vector table is inside the physical code regions
@ Protection of the SCTLR and VBAR: Kernel Instrumentation

» Check the values before executing the special instructions

BR SEOUL 14
ek OR

Rule 3: Indirect branches

® Challenge: Mode recognition

* In which CPU mode a trace is generated?
= Jump to gateway code block indicates the kemel enter

® Answer: special traces in the exit code blocks

msr SPSR_fsxc, r1
and r3, r1, #31
cmp r3, #16
subeq pc, pc, #4
restore_context
movs pg, Ir

Trace Interface -

Trace Monitor
Mode: kernel

NNNNN NAL 1 5

UNIVERSITY

Rule 4: Mappings

® Memory management unit uses:

Page Global

Directory Page Tables

@ Partial page table protection
= Small number of (<10) PGD entries for virtual code region translations
» Traffic Monitor can detect the modifications

® TTBR protection: Kernel Instrumentation
» Check the PGD entries before updating the TTBRs

PR SEOUL 16
UneRsiTY OR

Prototype implementation details

® Implemented all hardware components in Verilog HDL
® Used Xilinx ZC702 evaluation kit to prototype

® Operational frequency:
» Processor core: 222MHz
» Kargos hardware modules: 80MHz

® Kernel instrumentations
» Six for SCTLR updates
» Four for TTBR updates
= Two exit code blocks

SEOUL 17
oNweRsTY OR

Evaluation: Security

® Implemented three Proof-of-Concept(PoC) attacks using
a real-world vulnerability (CVE-2014-3153)
» Kemel code modification
» Virtual code region remapping
» Redirecting the kemel execution to a attacker's code block

@ Targeting Linux kernel 3.8.0 for Android 4.2

@ All these three attacks detected

Evaluation: Performance 1

-

® LMBench result to show the impact on OS services

Name Baseline Kargos

null syscall 0.98us 1.07us (0.92%)
open/close 18.39us 18.15us (-1.28%)
select 4.58s 4.57us (-0.11%)
sig. handler install 2.81us 2.82us (0.11%)
sig. handler overhead 9.91us 10.55us (6.42%)
pipe 40.89us 43.23us (5.72%)
fork+exit 2853.15us 2838.60us (-0.51%)
fork+execve 9279.8us 9159.16us (-1.3%)
page fault 4.34us 4.45us (3.63%)
mmap 84.7us 84.9us (0.24%)

SEOUL 19
S oR

Evaluation: Performance 2

-

®© Application benchmarks for the comparison

Name Baseline Kargos

400.perlbench 12097.99s 12121.52s (0.19%)
401.bzip2 7284.54s 7274.29s (-0.14%)
403.gcc 2420.82s 2429.91s (0.38%)
445.gobmk 13412.38s 13542.57s (0.97%)
456.hmmer 15327.28s 15385.06s (0.38%)
458.sjeng 17000.11s 17051.94s (0.3%)
462.libquantum 42659.18s 42753.94s (0.22%)
464.h264ref 18785.86s 18841.65s (0.3%)
471.omnetpp 10334.19s 10382.46s (0.47%)
4773 .astar T717.71s 7684.35s (-0.43%)
483.xalancbmk 11235.73s 11257.41s (0.19%)

UNIVERSITY

Name Baseline Kargos

RL 607.90 610.82 (0.48%)
CF-Bench 531.80 527.80 (0.75%)
GeekBench 67.20 67.00 (0.30%)
Linpack-single 9.01 8.96 (0.64%)
Vellamo-metal 121.80 121.40 (0.30%)

20

Son

Conclusion E{,}i

® Detection of kernel code injection attacks is not expensive
= With appropriate hardware supports

® Hardware monitors can examine CPU states

» Mode of execution (privileged/user)
= Special register values

@ Can this mechanism also applied for the detection of
the code-reuse attacks?

SEOUL 21
oNweRsTY OR

SEOUL
@ NATIONAL 22 OR
UNIVERSITY

RESEAROH GROUP

