A Formal Security Analysis of Even-Odd Sequential Prefetching in Profiled Cache-Timing Attacks

Sarani Bhattacharya, Chester Rebeiro, Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur

HASP 2016 June 18, 2016

- In this paper we analyze the leakage for a variant of sequential hardware prefetching algorithm termed as *even-odd sequential* (EOS).
- We formally analyze this prefetching algorithm using combinatorial and provable techniques and a method is developed which quantifies the leakage in profiled cache timing attacks.
- We show that leakage due to the EOS prefetcher depends on the size and alignment of the tables used in the cipher.
- The results were verified with cachegrind ^a.
- Further, we show that for a particular table alignment the leakage is always zero and for other alignments leakage reduces for large tables.

^ahttp://valgrind.org/docs/manual/cg-manual.html

Profiled Cache Timing Attacks

Figure: Timing Profile for OpenSSL AES on Intel Core 2 Duo

- A formal treatment to quantify leakage for profiled cache-timing attacks was introduced in [1].
- Hardware cache prefetching [2], a common feature in most modern microprocessors, resulted in non-uniform encryption time and therefore a cause of leakage in profiled cache-timing attacks.
- In [3], block cipher CLEFIA and its vulnerability due to sequential prefetching is demonstrated using a metric Timing SVF in the context of profiled cache-timing attacks.

Even-Odd Sequential Prefetcher is:

- a variant of sequential prefetcher.
- It prefetches the adjacent memory block whose location is determined by the address of the current access.
- If memory block is even then the next block is prefetched.
- If the memory block accessed is odd then the previous block is prefetched.

- Input: Address of the memory block accessed (*t_i*)
- begin
- If (*t_i* is not present in cache) or (*t_i* was prefetched and this is the first access to *t_i*) then
 - If t_i is even and t_{i+1} is not in cache then prefetch t_{i+1}
 - If t_i is odd and t_{i-1} not in cache then prefetch t_{i-1}

end

Mathematical Model for Cache Memory Accesses

- Let a cipher is implemented with a lookup table of *I* blocks.
- During execution table is accessed *n_{max}* number of times at random locations.

The steps involved in formal analysis are:-

- Obtain the probability of a cache hit in the n^{th} access to the lookup-table, where $1 \le n \le n_{max}$.
- Obtain the conditional probability of a cache hit in the *n*th memory access to the lookup-tables, with the EOS prefetcher.
- The distribution of cache misses is Gaussian and therefore can be characterized by its mean and variance.
- Apply the Kullback-leibler divergence to quantify the information leakage.

7 / 34

Probability of a Cache hit in the n^{th} access in a classical cache

Let $A_{l,n}^C$ be a random variable that denotes the result of the n^{th} memory access to the table of size l in a system having a classical cache.

- $A_{l,n}^C$ can take values of either H or M respectively corresponding to a cache hit and a cache miss in the n^{th} memory access.
- The probability of obtaining a cache hit in the *n*th access is given by [4],

$$\Pr[A_{l,n}^{C} = H] = \frac{1}{l^{n-1}} \sum_{i=0}^{n-2} \binom{n-1}{i} (l-1)^{i}$$
(1)

Probability of a Cache miss in the n^{th} access in a classical cache

The probability of obtaining a cache miss in the n^{th} memory access is $Pr[A_{l,n}^{C} = M] = 1 - Pr[A_{l,n}^{C} = H]$ (2)

Probability of a Cache hit in the n^{th} access in a cache supporting prefetching

- P denote the given prefetching strategy
- $A_{l,n}^{C,P}$ the random variable denoting the result of the n^{th} access to the table of size *l*.
- The probability of obtaining a cache hit in the n^{th} access is

$$\begin{aligned} \Pr[A_{l,n}^{C,P} = H] = \Pr[A_{l,n}^{C,P} = H \mid \textit{collision}] \cdot \Pr[\textit{collision}] \\ + \Pr[A_{l,n}^{C,P} = H \mid \overline{\textit{collision}}] \cdot (1 - \Pr[\textit{collision}])] \end{aligned}$$

Two cases:-

- On collision, probability of a cache hit is exactly equal to cache hit in classical case.
- When no collision has occured, a cache hit is obtained if data has been prefetched.

The equation is rewritten as

$$\Pr[A_{l,n}^{C,P} = H] = \Pr[A_{l,n}^{C} = H] + \Pr[A_{l,n}^{P} = H] \cdot (1 - \Pr[A_{l,n}^{C} = H])]$$

Conditional probability of the even-odd sequential prefetcher

Probability of cache hit is altered if one of previous accesses is known

Here we analyze the conditional probability of obataining a cache hit conditioning on the previous occurances of plain text.

- T_m is the random variable denoting the block in the table accessed in the m^{th} access.
- We assume m = 1, thus conditioning on the first access.
- To determine $\Pr[A_{l,n}^{EOSP} = H | T_m]$, where $A_{l,n}^{EOSP}$ is the random variable denoting the effect of the Even-Odd Sequential prefetcher in the n^{th} access.

Even-Odd prefetching in various table alignments

Figure: Effect of EOSP on cache misses in various table alignments

_		_	-	~ -	-
	^ 5	ь.	.,		h
			-	υı	U

Even-Odd Sequential Prefetcher 13 / 34

Even-Odd prefetching in various table alignments

Figure: Effect of EOSP on cache missses in various table alignments

	AC		- 01	01	6
н	AS	P	_ 2	UΙ	υ

Even-Odd Sequential Prefetcher

14 / 34

- The table starts from an even location, ends in a odd location
- Length of the table is even.
- EOSP be a function returning the prefetched memory block ie. $EOSP(t_b) = t_{b+1}$ if t_b is even and $EOSP(t_b) = t_{b-1}$ if t_b is odd.
- To determine the probability of hit in the *n*th access given the first access. So two cases arises.
 - The probability that the n^{th} access is a hit due to the block being prefetched by the first access T_1
 - The block being prefetched by any other n-2 accesses other than the known first access T_1 and T_n

$$Pr[A_{l,n}^{EOSP} = \mathcal{H} | T_1] = Pr[A_{l,n}^{EOSP} = \mathcal{H} | T_n = EOSP(T_1)] \cdot Pr[T_n = EOSP(T_1)] + Pr[A_{l,n}^{EOSP} = \mathcal{H} | T_n \neq EOSP(T_1)] \cdot Pr[T_n \neq EOSP(T_1)]$$

There are two components in this equation

- When $T_n = EOSP(T_1)$, it would certainly cause a cache hit.
- Since T_n cannot have a collision with T_1 , it can only take l-1 different values and not l. Thus,

$$\Pr[T_{l,n} = EOSP(T_1)] = \frac{1}{l-1}$$

$T_n \neq EOSP(T_1)$

- Happens with probability 1 1/(l 1).
- Hit in the n^{th} access occurs iff $T_n = EOSP(T_i)$ and $2 \le i \le n-1$.
- The probability of occurance is given by:

$$\Pr[A_{l,n}^{EOSP} = H \mid T_n \neq EOSP(T_1)] = \frac{\alpha}{(l-2)(l-1)^{n-2}} \cdot \sum_{i=1}^{n-2} \binom{n-2}{i} (l-2)^{n-2-i}$$

• where α is the number of prefetchable blocks.

• Thus, $\alpha = I - 2$ as $T_n \neq T_1$ and $T_n \neq EOSP(T_1)$

Thus combining two parts overall equation is written as,

$$\Pr[A_{l,n}^{EOS} = H \mid T_1] = \frac{1}{(l-1)^{n-1}} [(l-1)^{n-2} + (l-2) \cdot \sum_{i=1}^{n-2} \binom{n-2}{i} (l-2)^{n-2-i}]$$

-∢ ⊒ ▶

With the same analysis as before we here have two components as

- When $T_n = EOSP(T_1)$, it would certainly cause a cache hit.
- T_n cannot have a collision with T_1
- It can only take l-1 different values and not l. Thus,

$$Pr[T_{l,n} = EOSP(T_1)] = \frac{1}{l-1}$$

When $T_n \neq EOSP(T_1)$

- This happens with probability 1 1/(l 1).
- Hit in the n^{th} access occurs iff $T_n = EOSP(T_i)$ and $2 \le i \le n-1$.
- The probability with which this happens is given as:

$$\Pr[A_{l,n}^{EOSP} = H \mid T_n \neq EOSP(T_1)] = \frac{\alpha}{(l-2)(l-1)^{n-2}} \cdot \sum_{i=1}^{n-2} \binom{n-2}{i} (l-2)^{n-2-i}$$
(3)

,where α is the number of prefetchable blocks.

• If $T_1 = t_1$ then $T_n \neq t_1$. Thus, $\alpha = l - 1$. • If $T_1 \neq t_1$ then $T_n \neq T_1$, $T_n \neq EOSP(T_1)$ and $T_n \neq t_1$. Thus, $\alpha = l - 3$.

- Table start from an odd location.
- Has an even length and thus ends in an even location.
- First block and the last block cannot be prefetched.
- Both of them prefetches a block outside the table.
- Probability equation can be written as

$$\Pr[A_{l,n}^{EOSP} = H \mid T_1 = t_l \text{ or } T_1 = t_1] = \frac{(l-2)}{(l-1)^{n-1}} \cdot \sum_{i=1}^{n-2} \binom{n-2}{i} (l-2)^{n-2-i}$$
(4)

When $T_1 \neq t_l$ and $T_1 \neq t_1$

There are two components in this equation.

• When $T_n = EOSP(T_1)$, it would certainly cause a cache hit. Also, since T_n cannot have a collision with T_1 , it can only take l-1 different values and not l. Thus,

$$Pr[T_{l,n} = EOSP(T_1)] = \frac{1}{l-1}$$

• When $T_n \neq EOSP(T_1)$. This happens with probability 1 - 1/(l - 1). A hit in the n^{th} access occurs if and only if $T_n = EOSP(T_i)$ and $2 \leq i \leq n - 1$. The probability with which this happens is given by the following Equation.

$$\Pr[A_{l,n}^{EOSP} = H \mid T_n \neq EOSP(T_1), T_1 \neq t_l, T_1 \neq t_1] = \frac{\alpha}{(l-2)(l-1)^{n-2}} \cdot \sum_{i=1}^{n-2} \binom{n-2}{i} (l-2)^{n-2-i}$$
(5)

• • = • • = •

 α is the number of prefetchable blocks.

• $T_n \neq T_1$, $T_n \neq EOSP(T_1)$, $T_n \neq t_l$ (cannot be prefetched) and $T_n \neq t_1$ (cannot be prefetched). Thus, $\alpha = l - 4$.

- The table starts from an even location
- Ends in an even location.
- All the blocks in the table can be prefetched.
- Last block prefetches a block outside the table.
- Probability equation can be given as

$$\Pr[A_{l,n}^{EOSP} = H \mid T_1 = t_l] = \frac{1}{(l-1)^{n-2}} \cdot \sum_{i=1}^{n-2} \binom{n-2}{i} (l-2)^{n-2-i}$$
(6)

When $T_1 \neq t_l$

• When $T_n = EOSP(T_1)$, it would certainly cause a cache hit. Also, since T_n cannot have a collision with T_1 , it can only take l - 1 different values and not l. Thus,

$$\Pr[T_{l,n} = EOSP(T_1)] = \frac{1}{l-1}$$

When T_n ≠ EOSP(T₁). This happens with probability 1 − 1/(l − 1). A hit in the nth access occurs if and only if T_n = EOSP(T_i) and 2 ≤ i ≤ n − 1. The probability with which this happens is given by the following equation.

$$\Pr[A_{l,n}^{EOSP} = H \mid T_n \neq EOSP(T_1), T_1 \neq t_l] = \frac{\alpha}{(l-2)(l-1)^{n-2}} \cdot \sum_{i=1}^{n-2} \binom{n-2}{i} (l-2)^{n-2-i}$$
(7)

 $\boldsymbol{\alpha}$ is the number of prefetchable blocks.

• since $T_n \neq T_1$, $T_n \neq EOSP(T_1)$ and $T_n \neq t_l$ (cannot be prefetched). Thus, $\alpha = l - 3$.

ㅋㅋ ㅋㅋㅋ

э

This is a normal distribution having mean and variance

• The expected number of cache misses in the n^{th} access is given by ,

$$E(A_{l,n}) = 0 \cdot (Pr[A_{l,n} = \mathcal{H}]) + 1 \cdot (Pr[A_{l,n} = \mathcal{M}])$$
$$= 1 - Pr[A_{l,n} = \mathcal{H}]$$

• The variance of cache misses in the n^{th} access is

$$egin{aligned} \mathcal{V}(\mathcal{A}_{l,n}) &= (1 - \Pr[\mathcal{A}_{l,n} = \mathcal{H}]) - (1 - \Pr[\mathcal{A}_{l,n} = \mathcal{H}])^2 \ &= \Pr[\mathcal{A}_{l,n} = \mathcal{H}]^2 + \Pr[\mathcal{A}_{l,n} = \mathcal{H}] \end{aligned}$$

• The expectation of the number of cache misses after *n* memory accesses are given by the recurrence equation as,

$$E(M_n) = E(M_{n-1}) + E(A_{l,n})$$

Suppose,

$$E(M_1)=1$$

Cache profiles with Even-Odd Sequential Prefetcher for different Table Alignments

(c) EOSP with even-even (d) EOSP with odd-even Figure: Cache Profiles for k_1 with Even-Odd Sequential Prefetching Styles for Different Table Alignments and l = 16, $n_{max} = 36$, $\delta = 16$ with x-axis having the conditioned value and y-axis the number of cache misses

HASP 2016

Sarani Bhattacharya

Even-Odd Sequential Prefetcher

29 / 34

Predicted and Emperical Cache Profiles

(a) Cache Misses with even-odd

(b) Cache Misses with odd-odd

(c) Cache Misses with even-even

(d) Cache Misses with odd-even

Figure: Predicted and Empirical Cache Profiles for k_1 for Cipher Model $\Gamma = 1$, $n_{max} = 8$

Kullback-Leibler Divergence

- To quantify the deviations in timing profiles Kullback-Leibler Divergence is used
- Symmetric KL divergence between two distribution $F_{k_{1,i}}$ and $F_{k_{1,i^\prime}}$ is computed
- The metric is defined as:

$$D(F_{k_{1,i}}, F_{k_{1,i'}}) = D(F_{k_{1,i}} || F_{k_{1,i'}}) + D(F_{k_{1,i'}} || F_{k_{1,i}})$$
(8)

where

$$D(F_x||F_y) = \sum_j F_x(j) \log \frac{F_x(j)}{F_y(j)}$$

Variation of Leakage with Table Sizes

Figure: Leakage for k_1 with Various Table Alignments as the Table Size Increases $(n_{max} = 36)$

- Information leakage due to the Even-Odd Sequential prefetcher is formally analyzed for profiled cache-timing attacks.
- The analysis shows that the alignment of tables i.e., their starting and ending locations do have a great impact on the leakage of information.
- Also for a particular table alignment namely when the table start at an even memory block and ends at an odd memory block, there is no information leaked.

Thank You

æ

< ≣⇒

Chester Rebeiro and Debdeep Mukhopadhyay.

A formal analysis of prefetching in profiled cache-timing attacks on block ciphers. IACR Cryptology ePrint Archive, 2015:1191, 2015.

John L. Hennessy and David A. Patterson.

Computer Architecture: A Quantitative Approach, 4th Edition. Morgan Kaufmann, 2006.

Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay.

Hardware prefetchers leak: A revisit of SVF for cache-timing attacks.

In 45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2012, Workshops Proceedings, Vancouver, BC, Canada, December 1-5, 2012, pages 17–23. IEEE Computer Society, 2012.

A Formal Analysis of Prefetching in Profiled Cache-Timing Attacks.

Technical report, Communicated to the Journal of Cryptology.

< □ > < 同 > <

- ∢ ⊒ →

.≣ . ►