
A Formal Security Analysis of Even-Odd Sequential
Prefetching in Profiled Cache-Timing Attacks

Sarani Bhattacharya, Chester Rebeiro,
Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur

HASP 2016
June 18, 2016

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 1 / 34

Contributions of the paper

In this paper we analyze the leakage for a variant of sequential
hardware prefetching algorithm termed as even-odd sequential (EOS).

We formally analyze this prefetching algorithm using combinatorial
and provable techniques and a method is developed which quantifies
the leakage in profiled cache timing attacks.

We show that leakage due to the EOS prefetcher depends on the size
and alignment of the tables used in the cipher.

The results were verified with cachegrind a.

Further, we show that for a particular table alignment the leakage is
always zero and for other alignments leakage reduces for large tables.

ahttp://valgrind.org/docs/manual/cg-manual.html

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 2 / 34

Profiled Cache Timing Attacks

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

D
e

v
ia

ti
o

n
 f

ro
m

 A
v
e

ra
g

e
 T

im
e

ini

(a) Known Key Profile

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

D
e

v
ia

ti
o

n
 f

ro
m

 A
v
e

ra
g

e
 T

im
e

ini

(b) Unknown Key Profile

Figure: Timing Profile for OpenSSL AES on Intel Core 2 Duo

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 3 / 34

Motivation for the work

A formal treatment to quantify leakage for profiled cache-timing
attacks was introduced in [1].

Hardware cache prefetching [2], a common feature in most modern
microprocessors, resulted in non-uniform encryption time and
therefore a cause of leakage in profiled cache-timing attacks.

In [3], block cipher CLEFIA and its vulnerability due to sequential
prefetching is demonstrated using a metric Timing SVF in the context
of profiled cache-timing attacks.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 4 / 34

Even-Odd Sequential Prefetcher

Even-Odd Sequential Prefetcher is:

a variant of sequential prefetcher.

It prefetches the adjacent memory block whose location is determined
by the address of the current access.

If memory block is even then the next block is prefetched.

If the memory block accessed is odd then the previous block is
prefetched.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 5 / 34

Algorithm for Even-Odd Sequential Prefetcher

Input: Address of the memory block accessed (ti)

begin

If (ti is not present in cache) or (ti was prefetched and this is the first
access to ti) then

If ti is even and ti+1is not in cache then prefetch ti+1

If ti is odd and ti−1 not in cache then prefetch ti−1

end

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 6 / 34

Mathematical Model for Cache Memory Accesses

Let a cipher is implemented with a lookup table of l blocks.

During execution table is accessed nmax number of times at random
locations.

The steps involved in formal analysis are:-

Obtain the probability of a cache hit in the nth access to the
lookup-table, where 1 ≤ n ≤ nmax .

Obtain the conditional probability of a cache hit in the nth memory
access to the lookup-tables, with the EOS prefetcher.

The distribution of cache misses is Gaussian and therefore can be
characterized by its mean and variance.

Apply the Kullback-leibler divergence to quantify the information
leakage.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 7 / 34

Probability of a Cache hit in the nth access in a classical
cache

Let AC
l ,n be a random variable that denotes the result of the nth memory

access to the table of size l in a system having a classical cache.

AC
l ,n can take values of either H or M respectively corresponding to a

cache hit and a cache miss in the nth memory access.

The probability of obtaining a cache hit in the nth access is given by
[4],

Pr[AC
l ,n = H] =

1

ln−1

n−2∑
i=0

(
n − 1

i

)
(l − 1)i (1)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 8 / 34

Probability of a Cache miss in the nth access in a classical
cache

The probability of obtaining a cache miss in the nth memory access is

Pr[AC
l ,n = M] = 1− Pr[AC

l ,n = H] (2)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 9 / 34

Probability of a Cache hit in the nth access in a cache
supporting prefetching

P denote the given prefetching strategy

AC ,P
l ,n the random variable denoting the result of the nth access to the

table of size l .

The probability of obtaining a cache hit in the nth access is

Pr[AC ,P
l ,n = H] = Pr[AC ,P

l ,n = H | collision] · Pr[collision]

+ Pr[AC ,P
l ,n = H | collision] · (1− Pr[collision])]

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 10 / 34

Two cases:-

On collision, probability of a cache hit is exactly equal to cache hit in
classical case.

When no collision has occured, a cache hit is obtained if data has
been prefetched.

The equation is rewritten as

Pr[AC ,P
l ,n = H] = Pr[AC

l ,n = H] + Pr[AP
l ,n = H] · (1− Pr[AC

l ,n = H])]

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 11 / 34

Conditional probability of the even-odd sequential
prefetcher

Probability of cache hit is altered if one of previous accesses is known

Here we analyze the conditional probability of obataining a cache hit
conditioning on the previous occurances of plain text.

Tm is the random variable denoting the block in the table accessed in
the mth access.

We assume m = 1, thus conditioning on the first access.

To determine Pr[AEOSP
l ,n = H | Tm], where AEOSP

l ,n is the random
variable denoting the effect of the Even-Odd Sequential prefetcher in
the nth access.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 12 / 34

Even-Odd prefetching in various table alignments

Even Index

Prefetch
Candidates

l = even

Odd Index

(a) EOSP in even-odd align-
ment

Odd Index

Prefetch
Candidates

l = odd

Odd Index

(b) EOSP in odd-odd align-
ment

Figure: Effect of EOSP on cache misses in various table alignments

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 13 / 34

Even-Odd prefetching in various table alignments

Even Index

Prefetch
Candidates

l = odd

Even Index

(a) EOSP in even-even
alignment

Even Index

Prefetch
Candidates

l = even

Odd Index

(b) EOSP in odd-even align-
ment

Figure: Effect of EOSP on cache missses in various table alignments

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 14 / 34

Even-Odd Alignment

The table starts from an even location, ends in a odd location

Length of the table is even.

EOSP be a function returning the prefetched memory block ie.
EOSP(tb) = tb+1 if tb is even and EOSP(tb) = tb−1 if tb is odd.

To determine the probability of hit in the nth access given the first
access. So two cases arises.

The probability that the nth access is a hit due to the block being
prefetched by the first access T1

The block being prefetched by any other n − 2 accesses other than the
known first access T1 and Tn

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 15 / 34

Pr [AEOSP
l ,n = H

∣∣T1] = Pr [AEOSP
l ,n = H|Tn = EOSP(T1)]·

Pr [Tn = EOSP(T1)]+

Pr [AEOSP
l ,n = H|Tn 6= EOSP(T1)]·

Pr [Tn 6= EOSP(T1)]

There are two components in this equation

When Tn = EOSP(T1), it would certainly cause a cache hit.

Since Tn cannot have a collision with T1, it can only take l − 1
different values and not l . Thus,

Pr [Tl ,n = EOSP(T1)] =
1

l − 1

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 16 / 34

Tn 6= EOSP(T1)

Happens with probability 1− 1/(l − 1).

Hit in the nth access occurs iff Tn = EOSP(Ti) and 2 ≤ i ≤ n − 1.

The probability of occurance is given by:

Pr[AEOSP
l ,n =H | Tn 6= EOSP(T1)] =

α

(l − 2)(l − 1)n−2
·
n−2∑
i=1

(
n − 2

i

)
(l − 2)n−2−i

where α is the number of prefetchable blocks.

◦ Thus, α = l − 2 as Tn 6= T1 and Tn 6= EOSP(T1)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 17 / 34

Thus combining two parts overall equation is written as,

Pr[AEOS
l ,n = H | T1] =

1

(l − 1)n−1
[(l − 1)n−2 + (l − 2) ·

n−2∑
i=1

(
n − 2

i

)
(l − 2)n−2−i]

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 18 / 34

Odd-Odd Table Alignment

With the same analysis as before we here have two components as

When Tn = EOSP(T1), it would certainly cause a cache hit.

Tn cannot have a collision with T1

It can only take l − 1 different values and not l . Thus,

Pr [Tl ,n = EOSP(T1)] =
1

l − 1

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 19 / 34

When Tn 6= EOSP(T1)

This happens with probability 1− 1/(l − 1).

Hit in the nth access occurs iff Tn = EOSP(Ti) and 2 ≤ i ≤ n − 1.

The probability with which this happens is given as:

Pr[AEOSP
l ,n =H | Tn 6= EOSP(T1)] =

α

(l − 2)(l − 1)n−2
·
n−2∑
i=1

(
n − 2

i

)
(l − 2)n−2−i

(3)

,where α is the number of prefetchable blocks.

◦ If T1 = t1 then Tn 6= t1 . Thus, α = l − 1.
◦ If T1 6= t1 then Tn 6= T1, Tn 6= EOSP(T1) and Tn 6= t1. Thus,
α = l − 3.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 20 / 34

Odd-Even Alignment

Table start from an odd location.

Has an even length and thus ends in an even location.

First block and the last block cannot be prefetched.

Both of them prefetches a block outside the table.

Probability equation can be written as

Pr[AEOSP
l ,n = H | T1 = tl or T1 = t1]

=
(l − 2)

(l − 1)n−1
·
n−2∑
i=1

(
n − 2

i

)
(l − 2)n−2−i

(4)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 21 / 34

When T1 6= tl and T1 6= t1

There are two components in this equation.

When Tn = EOSP(T1), it would certainly cause a cache hit. Also,
since Tn cannot have a collision with T1, it can only take l − 1
different values and not l . Thus,

Pr [Tl ,n = EOSP(T1)] =
1

l − 1

When Tn 6= EOSP(T1). This happens with probability 1− 1/(l − 1).
A hit in the nth access occurs if and only if Tn = EOSP(Ti) and
2 ≤ i ≤ n − 1. The probability with which this happens is given by
the following Equation.

Pr[AEOSP
l ,n =H | Tn 6= EOSP(T1),T1 6= tl ,T1 6= t1] =

α

(l − 2)(l − 1)n−2
·
n−2∑
i=1

(
n − 2

i

)
(l − 2)n−2−i

(5)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 22 / 34

α is the number of prefetchable blocks.

◦ Tn 6= T1, Tn 6= EOSP(T1), Tn 6= tl(cannot be prefetched) and
Tn 6= t1(cannot be prefetched). Thus, α = l − 4.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 23 / 34

Even-Even Alignment

The table starts from an even location

Ends in an even location.

All the blocks in the table can be prefetched.

Last block prefetches a block outside the table.

Probability equation can be given as

Pr[AEOSP
l ,n = H | T1 = tl] =

1

(l − 1)n−2
·
n−2∑
i=1

(
n − 2

i

)
(l − 2)n−2−i (6)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 24 / 34

When T1 6= tl

When Tn = EOSP(T1), it would certainly cause a cache hit. Also,
since Tn cannot have a collision with T1, it can only take l − 1
different values and not l . Thus,

Pr [Tl ,n = EOSP(T1)] =
1

l − 1

When Tn 6= EOSP(T1). This happens with probability 1− 1/(l − 1).
A hit in the nth access occurs if and only if Tn = EOSP(Ti) and
2 ≤ i ≤ n − 1. The probability with which this happens is given by
the following equation.

Pr[AEOSP
l ,n = H | Tn 6= EOSP(T1),T1 6= tl] =

α

(l − 2)(l − 1)n−2
·
n−2∑
i=1

(
n − 2

i

)
(l − 2)n−2−i

(7)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 25 / 34

α is the number of prefetchable blocks.

◦ since Tn 6= T1, Tn 6= EOSP(T1) and Tn 6= tl(cannot be prefetched) .
Thus, α = l − 3.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 26 / 34

Cache Miss Distribution

This is a normal distribution having mean and variance

The expected number of cache misses in the nth access is given by ,

E (Al ,n) = 0 · (Pr [Al ,n = H]) + 1 · (Pr [Al ,n =M])

= 1− Pr [Al ,n = H]

The variance of cache misses in the nth access is

V (Al ,n) = (1− Pr [Al ,n = H])− (1− Pr [Al ,n = H])2

= Pr [Al ,n = H]2 + Pr [Al ,n = H]

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 27 / 34

Expectation of cache Misses

The expectation of the number of cache misses after n memory
accesses are given by the recurrence equation as,

E (Mn) = E (Mn−1) + E (Al ,n)

Suppose,
E (M1) = 1

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 28 / 34

Cache profiles with Even-Odd Sequential Prefetcher for
different Table Alignments

 7.78

 7.8

 7.82

 7.84

 7.86

 7.88

 7.9

 7.92

 7.94

 7.96

 0 50 100 150 200 250

E
xp

ec
te

d
nu

m
be

r
of

 c
ac

he
 m

is
se

s

p1

(a) EOSP with even-odd

 8.26

 8.28

 8.3

 8.32

 8.34

 8.36

 8.38

 8.4

 8.42

 8.44

 0 50 100 150 200 250

E
xp

ec
te

d
nu

m
be

r
of

 c
ac

he
 m

is
se

s

p1

(b) EOSP with odd-odd

 8.26

 8.28

 8.3

 8.32

 8.34

 8.36

 8.38

 8.4

 8.42

 8.44

 0 50 100 150 200 250

E
xp

ec
te

d
nu

m
be

r
of

 c
ac

he
 m

is
se

s

p1

(c) EOSP with even-even

 8.66

 8.68

 8.7

 8.72

 8.74

 8.76

 8.78

 8.8

 8.82

 8.84

 0 50 100 150 200 250
E

xp
ec

te
d

nu
m

be
r

of
 c

ac
he

 m
is

se
s

p1

(d) EOSP with odd-even

Figure: Cache Profiles for k1 with Even-Odd Sequential Prefetching Styles for Different Table

Alignments and l = 16, nmax = 36, δ = 16 with x−axis having the conditioned value and y-axis

the number of cache misses

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 29 / 34

Predicted and Emperical Cache Profiles

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 50 100 150 200 250

E
xp

ec
te

d
nu

m
be

r
of

 c
ac

he
 m

is
se

s

p1

(a) Cache Misses with even-odd

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

 3.6

 3.65

 3.7

 3.75

 3.8

 0 50 100 150 200

E
xp

ec
te

d
nu

m
be

r
of

 c
ac

he
 m

is
se

s

p1

(b) Cache Misses with odd-odd

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

 3.6

 3.65

 3.7

 3.75

 3.8

 0 50 100 150 200

E
xp

ec
te

d
nu

m
be

r
of

 c
ac

he
 m

is
se

s

p1

(c) Cache Misses with even-even

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 0 50 100 150 200 250

E
xp

ec
te

d
nu

m
be

r
of

 c
ac

he
 m

is
se

s
p1

(d) Cache Misses with odd-even

Figure: Predicted and Empirical Cache Profiles for k1 for Cipher Model Γ = 1,
nmax = 8

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 30 / 34

Information Leakage using Kullback Leibler Divergence

Kullback-Leibler Divergence

To quantify the deviations in timing profiles Kullback-Leibler
Divergence is used

Symmetric KL divergence between two distribution Fk1,i
and Fk1,i′ is

computed

The metric is defined as:

D(Fk1,i
,Fk1,i′) = D(Fk1,i

||Fk1,i′) + D(Fk1,i′ ||Fk1,i
) (8)

where

D(Fx ||Fy) =
∑
j

Fx(j) log
Fx(j)

Fy (j)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 31 / 34

Variation of Leakage with Table Sizes

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60 70

Le
ak

ag
es

Size of Table(l)

(a) Even-Odd Table alignment
(Γ = 1)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70

Le
ak

ag
es

Size of Table(l)

(b) Odd-Even Table alignment
(Γ = 1)

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

Le
ak

ag
es

Size of Table(l)

(c) Odd-Odd Table alignment
(Γ = 1)

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

Le
ak

ag
es

Size of Table(l)

(d) Even-Even Table alignment
(Γ = 1)

Figure: Leakage for k1 with Various Table Alignments as the Table Size Increases
(nmax = 36)

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 32 / 34

Conclusion

Information leakage due to the Even-Odd Sequential prefetcher is
formally analyzed for profiled cache-timing attacks.

The analysis shows that the alignment of tables i.e., their starting and
ending locations do have a great impact on the leakage of information.

Also for a particular table alignment namely when the table start at
an even memory block and ends at an odd memory block, there is no
information leaked.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 33 / 34

Thank You

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 34 / 34

Chester Rebeiro and Debdeep Mukhopadhyay.

A formal analysis of prefetching in profiled cache-timing attacks on block ciphers.
IACR Cryptology ePrint Archive, 2015:1191, 2015.

John L. Hennessy and David A. Patterson.

Computer Architecture: A Quantitative Approach, 4th Edition.
Morgan Kaufmann, 2006.

Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay.

Hardware prefetchers leak: A revisit of SVF for cache-timing attacks.
In 45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2012, Workshops Proceedings,
Vancouver, BC, Canada, December 1-5, 2012, pages 17–23. IEEE Computer Society, 2012.

A Formal Analysis of Prefetching in Profiled Cache-Timing Attacks.

Technical report, Communicated to the Journal of Cryptology.

HASP 2016 Sarani Bhattacharya Even-Odd Sequential Prefetcher 34 / 34

