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Motivations

Derive optimal distinguisher in timing attacks.
Find ways to avoid the Empty bin Issue.
Derive more appropriate distinguishers.
Compare these distinguishers with simuations and real attacks.



4 18 June 2016 Institut Mines-Télécom HASP 2016 - Seoul

Template Attacks

Template side-channel attacks

Attacker computes distinguisher values using all the available data
A profiling stage is very useful to provide some a priori information
about the leakage model.
However, profiling is essentially empirical and may not be
exhaustive.
Therefore, during the attack, the attacker may come up on
previously unseen data, which can be troublesome.
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State-of-the-art on Template Attacks

TABLE: State-of-the-art on profiled timing attacks

Profiling method Reference articles

Moments [Ber05, RM12, WHS12, BRM12]

Distributions Our paper (Caution about empty bins)
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Model

t is the text (plaintext / ciphertext)
k is the key (k∗ is the correct key)
x is the leakage (time)

xi = ψ(ti ⊕ k∗) (i = 1,2, . . . ,q) (1)

where ⊕ is the XOR (exclusive or) operator and ψ is an unknown
function which may contain noise, masking and other hidden
parameters 1.

1. The AES meets the secret and the text byte through a xor executed in a fixed
number of clock cycles. However, the rest of the AES meets tables and other reposito-
ries which are difficult to model and need different amounts of time, hence the use of
an unknown function ψ.
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Notations

Hat “ ·̂ ” for profiling
Tilde “ ·̃ ” for online

Definition : number of occurrences

n̂x ,t =

q̂∑
i=1

1x̂i=x ,̂ti=t n̂x =

q̂∑
i=1

1x̂i=x ,

ñx ,t =

q̃∑
i=1

1x̃i=x ,̃ti=t ñx =

q̃∑
i=1

1x̃i=x .
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Notations

Hat “ ·̂ ” for profiling
Tilde “ ·̃ ” for online

Definition : probabilities

P̂(x , t) =
1
q̂

q̂∑
i=1

1x̂i=x ,̂ti=t =
n̂x ,t

q̂
P̂(x) =

1
q̂

q̂∑
i=1

1x̂i=x =
n̂x

q̂
,

P̃(x , t) =
1
q̃

q̃∑
i=1

1x̃i=x ,̃ti=t =
ñx ,t

q̃
P̃(x) =

1
q̃

q̃∑
i=1

1x̃i=x =
ñx

q̃
.
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Definition (Success Rate)

The success rate SR is probability, averaged over all possible keys, of
obtaining the correct key.

SR =
1
2n

2n−1∑
k∗=0

Pk∗(k̃ = k∗), (2)

where k̃ is the key guess obtained by the distinguisher during the
attack.

Optimal attacks

It has been proven [HRG14, Theorem 1, equation (3)] that for
equiprobable keys the optimal distinguisher maximizes likelihood :

DOptimal(x̃, t̃) = arg max
k∈K

P(x̃|̃t⊕ k). (3)
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Optimal attacks versus Template attacks

In real life, however, the attacker does not know the leakage model
perfectly and thus P(x̃|̃t⊕ k) is not available. In order to get an
estimation of P, we use the profiling data to build P̂. This is the
classical template attack. The distinguisher becomes

DTemplate(x̃, t̃) = arg max
k∈K

P̂(x̃|̃t⊕ k). (4)

This distinguisher is no longer optimal as it does not use the real
distribution P. However, if profiling tends to exhaustivity, P̂ and P will be
very close since by the law of large numbers,

∀x , t P̂(x , t) −→
q̂→∞

P(x , t).



In practice, it is convenient to use the logarithm

arg max
k∈K

log P̂(x̃|̃t⊕ k).

In fact, since the samples are i.i.d., we have

P̂(x̃|̃t⊕ k) =

q̃∏
i=1

P̂(x̃i |̃ti ⊕ k).

Therefore, the attacker computes

DTemplate(x̃, t̃) = arg max
k∈K

q̃∑
i=1

log P̂(x̃i |̃ti ⊕ k) (5)

where the logarithm is used to transform products into sums for a more
reliable computation.
However, we would like to avoid empty bins for which P̂(x̃i |̃ti ⊕ k) = 0,
since otherwise, Equation (5) would not be well defined.
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Example of Empty Bins
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FIGURE: Empirical probability P̂(x |t ⊕ k) for t = 0 and k = 67
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Dirichlet prior

Let some values αx ,t > 0 and α =
∑

x ,t αx ,t .

New distribution :

P̄α(x , t) = P(x , t |x̂, x̃, t̂, t̃) =
n̂x ,t + ñx ,t + α

q̂ + q̃ +
∑

x ,t αx ,t
. (6)

It is important to notice that for all (x , t) ∈ X × T , one has P̄α(x , t) > 0.
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Learnt MIA

Since our function ψ is unknown, we can create a first-order model ψ̂
with the profiled data as

ψ̂(t ⊕ k̂∗) = Step
( 1

n̂t

∑
i s.t. t̂i=t

x̂i

)
(∀t ∈ T ). (7)

The Step function is a function that ensures the non-injectivity of the
model. The simplest way to define Step would be the following :

Step(x) =
bd · xc

d
(x ∈ R)

where d > 0—the greater d , the smaller the step size. This parameter
d has to be small enough in order to make the model
non-injective [PR09]. With such a model, it is possible to compute a
MIA which successfully distinguishes the correct key.
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1- Hard drop distinguisher

Definition (Hard Drop Distinguisher)

The hard drop distinguisher is defined as followed :

DHard(x̃, t̃) = arg max
k∈K

∑
i∈I

log P̂(x̃i |̃ti ⊕ k), (8)

where I is defined as

I =
{

i ∈ {1, . . . , q̃} | ∀k ∈ K, P̂(x̃i |̃ti ⊕ k) > 0
}
. (9)
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2- Soft drop distinguisher

Definition (Soft Drop Distinguisher)

We define the Soft Drop Distinguisher as

DSoft(x̃, t̃) = arg max
k∈K

∑
i s.t. P̂(x̃i |̃ti⊕k)>0

log P̂(x̃i |̃ti ⊕ k) +
∑

i s.t. P̂(x̃i |̃ti ,k)=0

log γ, (10)

where γ ∈ R∗+ is a constant such that
∀i , k ∈ {1, . . . , q̃} × K, γ ≤ P̂(x̃i |̃ti ⊕ k). This means that we penalize
data with zero probability. The smaller γ, the harder the penalty.
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3- Dirichlet Distinguisher

Definition (The Dirichlet Distinguisher)

We define the Dirichlet Distinguisher as :

DDirichlet(x̃, t̃) = arg max
k∈K

P̄α(x̃|̃t⊕ k). (11)



18 18 June 2016 Institut Mines-Télécom HASP 2016 - Seoul

4- Offline-Online Profiled (OOP)

lim
α→0

P̄α(x |t) =
n̂x ,t + ñx ,t

n̂t + ñt
.

This distribution can be denoted as P̄0(x |t) and resembles a profiling
stage that would start offline and continue online.

Definition (Offline-Online Profiling)

The Offline-Online Profiled (OOP) distinguisher is defined as :

DOOP(x̃, t̃) = arg max
k∈K

P̄0(x̃|̃t⊕ k) (12)
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5- Learned MIA

Definition (The Learned MIA Distinguisher)

The Learned MIA Distinguisher is defined as :

DMIA_Learned = arg max
k∈K

Ĩ
(

x̃; ψ̂(̃t⊕ k)
)
, (13)

where Ĩ is the empirical mutual information [GBTP08].
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6- Empty Bin Distinguisher

Definition
The Empty Bin Distinguisher is defined as :

DEmpty_Bin(x̃, t̃) = arg min
k∈K

q̃∑
i=1

1P̂(x̃i |̃ti⊕k)=0. (14)
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Simulated Model

We test the previous distinguishers upon simulations.

Leakage Model

We use the following leakage model :

∀i xi = Hw(SubBytes(ti ⊕ k∗)) + ni

where ni is a uniform noise shuch as P(ni = x) =

{
0 if |x | > σ

1
2σ+1else

.

The noise depends on one parameter σ ∈ N.
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Parameters of the Simulation

Attack

Key and Textbytes : 8 bits ;
σ = 24.

Distinguishers

Soft Drop Distinguisher : γ = 1
q̂ .

Compare with the Optimal distinguisher (cf. Eq 3).
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Results of the Simulation
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FIGURE: Simulation for q̂ = 320 and σ = 24.
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Measurement setup

Properties of STM32F407VGT6 microcontroller :
No CPU cycle counter nor performance register
But DWT (Data Watchpoint and Trace) unit has a cycle accurate
32 bit counter (DWT_CYCCNT register)

=⇒ 10 000 measurements per second.
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Context : OpenSSL AES is not constant time
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Apparently, it is not only a matter of caches.
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Results on Hardware
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FIGURE: SR for q̂ = 25 600 on real-world measurements
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Results on Hardware
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Conclusions

Avoid the Empty Bin issue ;
Many Distinguishers for Timing attacks ;
Easy to implement.
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Thank You

Questions ?

eloi.de-cherisey@mines-telecom.fr

mailto:edecherisey@enst.fr
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