FAME: Fault-attack Aware Microprocessor Extensions
for Hardware Fault Detection and Software Fault Response

Bilgiday Yuce, Nahid F. Ghalaty, Chinmay Deshpande,

Conor Patrick, Leyla Nazhandali, Patrick Schaumont
Bradley Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, USA

{bilgiday,farhady,chinmay,conorpp,leyla,schaum}@vt.edu

ABSTRACT

Fault attacks are a known serious threat to embedded software secu-
rity. We propose FAME, a low-cost and flexible approach to defend
embedded software against fault attacks.

FAME offers a combination of fault detection in hardware and
fault response in software. A hardware fault detection unit con-
tinuously monitors the system status. When a fault injection is de-
tected, an alarm signal triggers a secure trap mechanism that passes
the control to a software trap handler. The trap handler applies a
suitable fault response policy, which may include a broad variety
of responses such as clearing sensitive data or issuing system-wide
alerts. This enables a targeted, fast fault detection as well as an
application-dependent, user-defined fault response.

FAME requires much lower overhead than traditional counter-
measure techniques in software or hardware. We demonstrate a
prototype implementation of FAME using a modified LEON3 pro-
cessor, and we analyze the hardware and software overhead to thwart
setup-time violation attacks. The hardware area overhead is 7.4%
and 14.2% in the number of LUTs and registers, respectively. The
overhead of the software trap handler on top of an AES-128 pro-
gram is 0.59%-0.71% in footprint and 1.01%-2.35% in perfor-
mance, depending on the security policy. In contrast, traditional
countermeasures that use redundant hardware or software against
similar faults have at least double overhead.

CCS Concepts

eSecurity and privacy — Embedded systems security; Hard-
ware attacks and countermeasures; Software and application se-
curity;

Keywords
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ware Security

1. INTRODUCTION

With the tremendous growth of embedded and pervasive appli-
cations, we are increasingly putting trust and confidence in a range
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Figure 1: Comparison of (a) FAME and (b) traditional fault-
tolerance

of embedded systems from smartcards to pay-TV units. This trend
expands the threat model of secure embedded applications from
software into hardware. In this research, we investigate an impor-
tant class of hardware attacks against embedded software, which
uses fault injection as a hacking tool. Over the past 15 years,
fault attacks have grown from a crypto-engineering curiosity into
a systematic adversarial technique [|1}[2]. Fault attacks use well-
chosen, targeted fault injection combined with clever system re-
sponse analysis to break the security of a system. This includes
extracting the key material, weakening the cryptographic strength,
and bypassing the security.

Defending software against fault attacks introduces the additional
difficulty that the faults do not originate in the software, but rather
in the underlying processor hardware. Moreover, modern embed-
ded systems need to satisfy various performance and flexibility
requirements. Therefore, modern embedded systems need low-cost
and flexible mechanisms for fault detection and response [3H5].

In this research, we propose FAME, a fault-attack aware mi-
croprocessor suited for embedded, constrained systems. To pro-
tect embedded applications against fault attacks, FAME provides
generic microprocessor extensions to unprotected processor hard-
ware and user software. As shown in Fig. [Th, it partitions fault
detection and response over hardware and software. Hardware fault
detection immediately notifies FAME of a fault attack. Software
fault response enables flexible fault handling. At the hardware
level, FAME uses fault detectors to capture environmental anoma-
lies such as clock glitches or failed error checksums in memory. A
fault control unit ensures that fault recovery information is main-
tained in a set of Fault Response Registers (FRRs). When a fault is
detected, control is passed to a software trap handler to implement
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a user-defined, application-specific fault response policy. The fault
control unit, as well as the software trap handler, are fault-resistant
designs.

FAME allows low-cost, performance-efficient, and flexible miti-
gation of fault attacks. FAME achieves cost-efficiency using redun-
dancy to protect a small subset of the processor state (i.e, FRRs)
and a small portion of the embedded software (i.e, trap handler).
From a performance point of view, FAME extensions cause neg-
ligible timing overhead on the processor hardware. On the soft-
ware side, FAME affects the performance only if a fault is de-
tected. The actual software overhead depends on the complexity of
the trap handler, but will be smaller than the inherently-redundant
software-only techniques [6]. FAME provides flexibility through
user-defined fault response policy, which can be adjusted for the
security and performance needs of the application. Furthermore,
FAME is backward compatible with existing software as the fault
response is kept separate from the application.

The remainder of this paper is organized as follows. Section 2
summarizes the motivation behind this work. Section 3 explains
the generic FAME extensions. Section 4 provides a detailed case
study of the components of FAME on a LEON3 implementation.
Section 5 presents the related work. Section 6 shows the results
and overhead of FAME and compares it with conventional software
countermeasures. Section 7 concludes the paper.

2. MOTIVATION

Today, a great variety of fault injection and analysis methods
are available to attack all forms of embedded systems. Traditional
fault attacks assume a fault model derived from the fault injection
technique and they infer internal system secrets by analyzing the
observed faulty system response [2]. More recently, faults have
also been recognized as a source of side-channel leakage. These
so-called biased fault attacks detect the onset of faults as a function
of fault injection intensity and internal secret variables []1},(7, 8]l
They then test the value of the internal secrets using hypothesis
testing. Biased fault attacks use fault models that are less strict
than traditional fault attacks. This variety of attacks underlines the
growing need for a generic and efficient countermeasure against
fault attacks.

The existing fault countermeasures for embedded software are
rooted in fault-tolerant system design, and they do not provide an
efficient solution for the requirements of modern embedded sys-
tems. The fundamental fault-tolerant method, illustrated in Fig.
[T, is to apply redundancy, to verify the redundant executions for
faults, and to restore the correct system state after fault detection.
These countermeasures are layered techniques that handle detec-
tion and response either completely in software or else completely
in hardware [61|9]. Software fault-tolerant techniques typically in-
cur significant performance overhead to establish the detection of
a faulty value, and they require specially prepared application soft-
ware. Hardware fault-tolerant countermeasures need to be self-
contained, and as such they incur significant area overhead. In
addition, fault-tolerant techniques are vulnerable against adaptive
adversaries [10,|11]].

Considering the requirements of modern embedded systems and
issues of fault-tolerant countermeasures, a crucial step for efficient
countermeasures is differentiating fault attack awareness from fault
tolerance. Fault tolerance aims at guaranteeing a certain level of
correctness under the assumption of a general, often random fault
model. The aim of fault-attack awareness is supporting a given se-
curity policy against an adversary who applies focused, intelligent
faults to extract secret keys. FAME utilizes this difference for a

low-cost and flexible countermeasure against fault attacks.

3. FAME EXTENSIONS

This section presents hardware and software extensions provided
by FAME for mitigation of fault attacks. These extensions are
generic, applicable to any embedded processor and software to
protect them against fault attacks. Before presenting the extensions,
we will define FAME’s threat model and classify the fault types
addressed by FAME.

3.1 Threat Model

In our threat model, FAME runs a secure application and con-
tains secret key material. The secure application communicates
with the outside world using a predefined protocol. We assume
an adversary whose objective is to extract the secret keys by using
only the outputs of the application. For this purpose, the adversary
actively and adaptively injects faults into execution of the security
application, and then, analyzes its response to the fault injection.

For a successful fault attack, the adversary needs to be capable
of controlling fault injection, predicting the effects of fault injection
on the program’s execution, and testing the prediction by observing
the actual effects of fault injection on the program’s execution.
FAME detects faults in the hardware level to prevent an adversary
from imposing the expected fault effects on the program’s execu-
tion. FAME also prevents an adversary from observing the actual
fault effects through fault response in software level.

Similar to the adversial model of Lemke-Rust and Paar [12f], we
exclude invasive adversaries from our threat model. The adversary
is not capable of modifying or monitoring the internals of chip, and
changing the code of the security application. Numerous solutions
can be found in the literature to protect the integrity of embedded
hardware [13]] and software [[14] against invasive adversaries.

3.2 Classification of Faults

Because fault attacks exploit transient faults, FAME focuses on
protecting embedded software against them. We separate the tran-
sient faults into different categories to specialize FAME'’s detection
and recovery capabilities for the specific needs of different faults.

From the fault detection point of view, we partition transient
faults into two categories, synchronous and asynchronous faults.
Synchronous faults are detected at well-defined points aligned with
the activity of processor’s pipeline. The detection of these faults
are associated with the execution of an instruction. For example,
a synchronous fault in a memory location can be detected while it
is being read by a memory-load instruction. Asynchronous faults
are detected at arbitrary times, independent of the instructions in
the pipeline. For example, asynchronous faults can be detected by
monitoring clock signal or supply voltage.

Faults can corrupt data at rest (i.e, in the memory) or in transit
(i.e, during computation). From the fault recovery point of view,
we classify a transient fault as a computation fault or a memory
fault. In case of a memory fault, an adversary injects faults into
data being stored in the memory. When this data is used in the
future computations, it leads to faulty results. In case of a compu-
tation fault, an adversary injects faults into the data being currently
processed in the processor’s pipeline. Recovering the effects of
computation faults requires a different approach than recovering
from memory faults. For example, a processor can recover from
a computation fault detected during the execution of an instruction
by re-executing this instruction [[15]]. Recovering from a memory
fault may require regularly checkpointing the critical state of an
application, and then, restarting the application from that point in
case of a memory fault [9].
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FAME envisions efficient detection and recovery of transient faults
injected with a malicious intention. However, we will focus on de-
tection of asynchronous faults and recovery of computation faults
in this work. Integration of low-cost mechanisms for synchronous-
fault detection and memory-fault recovery into FAME is our ongo-
ing research.

3.3 Overview of Operation

Fig. |Z| shows the overall architecture and operation of FAME,
which relies on hardware/software extensions to an unprotected
processor and user application.

A fault injection attempt is detected in hardware by the Fault
Detection Unit (FDU). Fault handling is achieved by a secure trap
mechanism. The Fault Control Unit (FCU) and Fault Response
Registers (FRRs) provide hardware support for this mechanism.
Upon detection of a fault, the FCU initiates the transition to a soft-
ware trap handler. FRRs provide an interface between the processor
hardware and the software trap handler. The software trap handler
applies a user-defined, application-specific security policy in a safe
mode. Next, we will explain the details of FAME’s components
and operation, of which steps are labeled with D-@ in Fig.

3.4 Fault Detection Unit (FDU)

The FDU includes a set of fault detectors and monitors the pro-
cessor to detect anomalies. During the normal operation, an appli-
cation runs in the nominal mode and no overhead is accrued. Upon
detection of a fault, the FDU asserts an alarm signal to notify the
processor of a potential fault attack (D and @ in Fig. [2).

The FDU derives the fault status for the overall processor by
combining different fault detectors. To detect asynchronous faults,
the FDU uses dedicated sensors such as clock/voltage glitch detec-
tors [16] and electromagnetic pulse detectors [17]]. To detect syn-
chronous faults in the datapath, the FDU uses concurrent error de-
tection methods [[18]] and shadow latches [[19]. For the synchronous
faults in the memory, the FDU uses error detection codes [20].
The detector configuration of FAME depends on the application
domain and the desired level of fault sensitivity. In this paper,
we detect faults that originate from timing violations. Given the
error detection mechanisms enumerated above, however, it should
be clear that the FDU mechanism is generic and that it can handle

a multitude of fault injection mechanisms.

3.5 Fault Control Unit (FCU)

The FCU acknowledges the alarm signal of the FDU and takes
immediate actions in the hardware level () in Fig. .

It saves the fault recovery information into FRRs, annuls the
instructions being executed in the pipeline, and disables write op-
erations into the register file as well as memory. This enables two
essential capabilities. First, the faulty parts of the software-visible
state, which are contaminated before the alarm is raised, can be
recovered by the trap handler. Second, no more faulty results will
be committed to the architectural state of the processor after the
alarm is raised.

Meanwhile, the FCU stops the execution of the application, ini-
tiates a non-maskable secure trap, and switches the processor from
nominal mode to safe mode. This switching is done immediately
at the next clock cycle. In safe mode, the processor is aware of the
fault injection, and it can handle the faults through software trap
handler.

It is mandatory that the FCU detects further fault injections and
prevents fault attacks on the trap handling mechanism. In this work,
the FCU restarts the software trap handler if a fault injection is
detected during safe mode. This guarantees that FAME cannot
exit from safe mode without completing the user-defined security
policy.

3.6 Fault Response Registers (FRRs)

FRRs maintain the fault recovery information, the minimum in-
formation required for recovering fault effects on the software-visible
state and returning from the trap handler.

To recover from computation faults, FRRs need to contain (i)
return address to the interrupted program; (ii) status register of the
processor; and (iii) the register-file inputs of the write-back stage,
at minimum. The software trap handler can use this information to
restore the software-visible state back to its correct, pre-fault status.
FAME uses redundancy to guarantee the correctness of the content
of FRRs.

Recovering from memory faults requires to keep the correct, pre-
fault values of the critical memory and register file locations. This
is ongoing research and future work for us. Our challenges in this
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task are determining the minimum content to maintain, identify-
ing the minimal set of hardware support, and designing a low-cost
mechanism.

3.7 Software Trap Handler

The final step of fault handling is passing control to the trap
handler (@ in Fig. . It applies a user-defined, application-specific
security policy in software, which enables a flexible and adaptive
fault response.

The trap handler first flushes the data cache to wipe out possibly
faulty data. Then it recovers the processor state just before the fault
injection by accessing FRRs. Finally, it applies the security policy
and returns back to the nominal mode. The security of the trap
handler is provided by traditional fault-tolerant countermeasures [6}
21]]. As the size of the trap handler is much smaller than the size
of the application, the cost of using traditional countermeasures is
affordable. The security policy can be adjusted for the cost and
security requirements of the application.

In summary, FAME uses fault detectors that are combined into a
processor-level alarm signal. The alarm signal initiates a software
trap to decide on the further course of action. FAME provides
hardware-level support to maintain the fault recovery information.
It is up to the trap handler to decide if it is safe to continue ex-
ecution or not. FAME ensures that the trap handling mechanism
itself is protected from faults. Next, we provide a proof-of-concept
implementation for FAME.

4. FAME PROTOTYPE

To evaluate the FAME processor, we implemented a prototype
by enhancing an existing processor with FAME extensions. The
prototype aims at protecting embedded software against setup-time
violation attacks. For this purpose, it employs FAME extensions
for detecting asynchronous faults in hardware-level and recovering
from computation faults in software-level.

4.1 Fault Injection to the Processor

To understand the operation of FAME, we need to carefully de-
fine the sequence of events leading to a fault. In a fault attack,
an adversary waits until a program reaches a specific point in its
execution. Then, he injects the fault into the program at this point.
Finally, the adversary observes the fault effects after this point. In
this work, we use fault cycle (Cy) to denote the clock cycle in which
the fault occurs. We use before-fault cycle (Cp) and after-fault cycle
(Cy) for the clock cycles before and after the fault, respectively. The
program’s execution is fault-free before Cy, and faulty from Cy.

The embodiment of Cp,,Cy,C, depends on the fault injection
method. Fig. [3] describes the situation when we use clock glitch
injection. A clock glitch will temporarily shorten the length of a
clock cycle from Ty to Tyjisch, thereby causing a timing violation
during Cy.

We will assume that the adversary does not have physical access
to the on-chip bus and memories. Therefore, the adversary uses
standard communication channels to observe the effects of faults.

alarm

Figure 4: 7-stage LEON3 pipeline with FAME extensions
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Figure 5: Block diagram of the Fault Detection Unit

4.2 LEON3 Processor Overview

Our prototype implementation is based on LEON3 [22]], which
is an open-source, 32-bit, SPARCv8-compilant, RISC processor
with a 7-stage pipeline. To incorporate the FAME extensions, we
modified a base LEON3 configuration, which includes a 64-KB
on-chip RAM memory as well as 4-KB direct-mapped caches for
Instructions and Data.

Fig. [ shows the 7-stage pipeline of LEON3 with FAME ex-
tensions. The pipeline consists of fetch (F), decode (D), register
access (A), execute (E), memory (M), exception (X), and write-back
(W) stages. We use a clock monitor as the FDU. We integrated the
FCU into the X stage. FRRs provide fault recovery information for
some parts of the X and W stages because of two reasons. First, the
Register File (RF) and Processor Status Register (PSR) are updated
in the W stage. Second, the return address for the trap handler is
computed in the X stage. Next, we will provide implementation
details of the FAME prototype.

4.3 Fault Detection Unit (FDU)

In our prototype, the FDU detects setup time violations by using
a delay chain [[T6/[17]] and a dummy flip-flop (FF) [19]. Fig.[3]shows
the FDU, which includes three FFs, a delay chain, a NOT, and an
XOR gate. The delay chain consists of buffers adjusted such that
its propagation delay T4y is slightly greater than the critical path
T.riricar Of the design. In this work, we determine the delay of the
chain using static timing analysis with worst-case conditions (STA-
WC). We use STA-WC as the proof-of-concept because of its sim-
plicity. More advanced techniques, such as representative critical
path synthesis [23]], can be used to capture process variations in the
synthesis of the delay chain. Toggle FF toggles its value every cycle
which then arrives at Capture FF immediately and at Dummy FF
after Ty,/qy. In normal operation (7.;), the inputs of both Capture
and Dummy FFs toggle to the new value before the next clock edge.
In case of glitchy clock Ty, Capture FF latches the new value
whereas the Dummy FF latches the old value as the Ty, is not
enough for delay chain to make transition to new value. Therefore,
the XOR gate generates the alarm signal at the next upgoing clock
edge.

4.4 Fault Control Unit (FCU)

In our prototype, the FCU uses the state machine shown in Fig.[6]
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to manage the secure trap mechanism. If the FCU detects an alarm
signal while the processor is in the nominal mode, it switches the
processor to safe mode. During this transition, the FCU (i) annuls
all instructions in the pipeline; (ii) disables all memory and register
file transfers of the user application; (iii) saves the fault recovery
information into FRRs; and (iv) resumes execution with the first
instruction of the trap handler. If the trap handler completes its
execution without another fault attack detection, the FCU switches
the processor back to the nominal mode. If the FDU detects a
fault while the processor is in safe mode, the FCU restarts the trap
handler and stays in safe mode. This guarantees that FAME cannot
exit from safe mode without completing the user-defined security
policy.

To initiate the fault processing after an alarm is raised, we extend
the X stage of LEON3. The X stage supports precise trap handling,
and transitions between processor modes. These extensions enable
two crucial elements of our fault handling method. First, secure
traps of FAME are immediately handled when the alarm is asserted.
Second, FAME saves the fault recovery information into FRRs and
provides this information to the software trap handler for correct
execution. Next, we explain our selection and security strategies
for the content of FRRs.

4.5 Fault Response Registers (FRRs)

FRRs keep the part of the processor state that is updated in Cj,
just before the fault injection in Cy. The software trap handler can
restore this processor state back and resume the execution of the
application.

Fig. [7] shows the principle of our FRR implementation. The
FRR keeps the previous value of the original pipeline register in
one of its shadow registers; while keeping the new value in the
other shadow register. Every clock cycle, only one of the shadow
registers is updated. The shadow register to be updated is selected
by a 1-bit signal bufsel. If Shadow Register O is updated during
the before-fault cycle Cy, Shadow Register 1 is updated during Cy.
Therefore, it is guaranteed that the fault occuring in Cy cannot
contaminate the correct value within both shadow registers. When
the alarm is asserted (in C,), the update of the shadow registers
are frozen until the trap handler is successfully completed. This

Clock | F [ DA | E | M | X | W | Pipeline
Cycles | | | | | 1 > stages
16 15 14 13 12 1 0 alarm=0
Cp 17 16 15 14 13 12 11 alarm=0
G 8 17 16 5 4 |3 gz | alarm=0
C, 19 18 17 16 15 14 13 alarm=1
Ca+ 1| trap annul annul annul annul annul annul alarm=0
[ — "Faulty instructions ~— - — "~ Recoverable Instructions |

Figure 8: Fault effect on the pipeline. Fault is injected during
Cy. The alarm is raised during C,. The first trap handler
instruction is fetched after C,.
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Figure 9: Trap Handler Flowchart for Invoking Resume Secu-
rity Policy

prevents the correct FRR content from being overwritten after Cy.

We determine the content of FRRs by analyzing the effect of the
fault injection on the execution of the pipeline. Fig. [§] shows the
effect of a fault on the LEON3 pipeline. In Fig.[8} clock cycles run
from the top, and pipeline stages run from left to right. In C¢, up
to seven instructions, /2 — I7, will potentially be faulty. During Cy,
two instructions could commit their results to the software-visible
state of the processor. First, instruction /4 could write a faulty
value to the data cache. Second, instruction /2 could update the
Processor Status Register (PSR) and the register file with a faulty
value. Both of these updates need to be intercepted and corrected
by the software trap handler. Then the execution can be resumed
from the next valid instruction (I3 in Fig.[8). Therefore, FRRs keep
(a) the register-file write address, write data, and write enable fields
of the write-back stage registers; (b) the flags field of PSR; and (¢)
the address of the instruction being executed in the X stage in Cy.

After control is passed to the software trap handler, it reads the
frozen content (a)—(c) of FRRs. At the minimum, the trap handler
will restore the correct processor state (using (a) and (b)), and
resume execution (using (¢)).

Our prototype implementation of FAME in LEON3 integrates
FRRs as follows. During the transition from nominal mode to
safe mode, the processor hardware writes the program counter to
the local register %11 of the software trap handler. We pack the
remaining bits of FRRs into two pairs of LEON3’s Ancillary State
Registers (ASRs), %asr20-21 and %asr22-23. The software han-
dler can access these registers using RDASR instruction of LEON3.
The frozen value of bufsel is also written into %asr20-21. Then the
trap handler can know which shadow register contains the correct
value.

4.6 Software Trap Handler

The trap handler is given control of the Processor once a fault
alert triggers. The first instruction in the handler is a memory flush.
This ensures all of the invalidated memory in the cache is dumped
and not used. Then, the software trap handler can provide different



options for handling the fault. One option can be to use the contents
of FRR and resume the program under attack from the point of fault
injection. In this scenario, we follow the flowchart in Fig.[9] First,
the trap handler reads %asr20-21 using RDASR. Then it checks
the bufsel bit in %asr20-21 to know which shadow registers of
FRRs contains the correct value. If bufsel is a one, then the content
of Shadow Register O is valid. If bufsel is not set, then Shadow
Register 1 must be used. Next, the valid FRR is bitmasked to get
the register index from it. This register index is the last register
that was written to the register file and could have been affected by
the fault in Cy. This is written back to the register file through a
WRASR instruction of LEON3. Our control hardware will use this
register index to restore the respective register to its last correct
value. Finally, the trap handler restores the PC and returns to the
nominal mode for resuming the program.

The importance of the flexibility provided by the software trap
handler becomes more significant at higher abstraction levels such
as protocol or algorithm level. For example, let us assume that
the processor is busy with multiple transactions over a standard es-
tablished connection to a server. These transactions contain several
sessions. Each session has an encryption function with a predefined
key. In case of detecting a fault during a session, the software
handler can take several actions. A low-level security policy could
allow the notification of the two parties. A medium-level security
policy could restore the correct status of the processor before fault
injection and continue the encryption algorithm. Higher security
levels might require changing the session key and restarting the
session or aborting the connection. Similarly, the security require-
ments can be adjusted dynamically depending on the severity of
the fault injection. For example, lower-level security policies can
be applied at the first invocation of the trap handler, while higher-
level security policies are applied at the following invocations of
the trap handler.

S. RELATED WORK

We summarize previous work on processor-oriented fault coun-
termeasures in three categories.

Software Countermeasures against Fault Attacks: These tech-
niques rely on redundancy such as Instruction Duplication (ID) [21],
Instruction Triplication (IT) [21], replacing each instruction with
a fault-tolerant instruction sequence (IS) [24], and parity check-
ing [6]. Theifing et al. [[6] and Barenghi et al. [21] provide a
comprehensive list and analysis of the software countermeasures.
The main drawback of these techniques is their large overhead in
performance and footprint.

Fault-Tolerant Design: A generic and well-studied solution for
faults is fault-tolerant design. Fault-tolerant design relies on re-
dundancy in hardware or software such as modular redundancy,
standby sparing, or N-version programming [9]. The fault-tolerant
design deals with random sporadic faults. However, in case of a
fault attack, the faults are intentionally injected by an intelligent ad-
versary. Thus, the fault-tolerant design is not sufficient for the fault
attack resistance. For example, the adversary can manipulate the
original and redundant hardware and retrieve the secret key [10]]. In
addition, the nature of the fault attack problem enables significant
optimizations in the cost of redundancy. For example, FAME uses
redundancy for a small part of the processor, FRRs.

Secure Processors: Researchers have proposed various secure
processors to provide hardware-level information security [25]. In
their security model, a system is partitioned into an on-chip trusted
region and an off-chip untrusted region [26]]. They assume that
the on-chip state of the processor (registers and caches) cannot be
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Figure 10: High-level block diagram of fault injection and
analysis setup.

tampered with; while the off-chip components can be observed and
modified by an adversary. Thus, they provide techniques to protect
integrity and confidentiality of the off-chip memories, such as hash
trees and memory encryption. FAME is different as it provides
security against fault attacks, in which an adversary can inject faults
into the on-chip components. Therefore, FAME is complementary
to the existing secure processors and it can be integrated into them
for on-chip security.

6. EXPERIMENTAL RESULTS

In this section, we provide experimental results for hardware/software

overhead and fault injection evaluation for the prototype of FAME.

6.1 Fault Injection and Analysis Setup

Figure [I0] shows an overview of our fault injection and analysis
setup. It consists of a controlling PC, a device under test (DUT),
a clock glitcher module, and an oscilloscope. We implement the
glitcher module and DUT on a SAKURA-G board [27]].

The PC manages the fault injection process by controlling and
configuring both the glitcher module and DUT. In this work, DUT
is the FAME prototype or unprotected LEON3 processor. It exe-
cutes a target program, which is an AES-128 implementation for
this work. DUT also sends trigger to the glitcher for fault injection.
The controlling PC communicates with DUT via a debug monitor.
The glitcher module takes a glitch-free clock signal as an input
from the pulse generator and generates a glitchy clock signal as
an output. We dynamically set the glitch parameters via commands
from the controlling PC.

6.2 Fault Injection Evaluation

We implemented the prototype of FAME on the main FPGA
(Xilinx Spartan6 XC6SLX75) of the SAKURA-G board to evalute
its operation under fault injection. We used an AES-128 imple-
mentation as the target program. In this experiment, our objec-
tive is to obtain the secret key of the AES-128 in the unprotected
LEON3 and FAME prototype. First, we injected faults into the
target program while it is running on the unprotected LEON3 and
obtained the faulty ciphertetxs to launch a fault attack. Then, we
injected faults into the target program running on FAME prototype
and observed its fault response.

We mounted a recent biased fault attack, DFIA [7]], on the output
of AES round 9 to extract a byte of the secret key. We considered
the AddRoundKey function as the last step in the execution of round
9. The reference implementation in C shows 16 statements of the
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; AES Start e N
; Trap handler

; Round 9, add round key ; Read FRRs to determine the valid FRR

call  40001fcc <read_asr>

Id [ %03 + 0xb0 ], %04

\ Idub  [%00 +0Oxb ], %05
Idub [ %04 + 0xb ], %gl —

xor %g1, %05, %gl

stb %g1, [ %04 + 0xb |

; Restore the pre-fault state
call 40001f4c <write_asr>

; Return from trap
rett <next instruction>

Figure 11: The target program, attack model, and trap handler
for FAME-Resume
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(; AES Start ) (; Trap handler
; Read FRRs to determine the valid FRR
; Round 9, add round key call 40001fcc <read_asr>

Id [ %03 +0xb0 ], ; Restore the pre-fault state
%04 call 40001f4c <write_asr>
‘ Idub %00+ Oxb ], %05
Idub [ %04 + 0xb ], %gl
xor %g1, %05, %gl
stb %g1, [ %04 + 0xb ]

o J

; Change the encryption key
call 400038ac <change_key>

; Return from trap
\rett <AES Start>

L |
Figure 12: The target program, attack model, and trap handler
for FAME-KeyChange

following form, with state the state variable, and Roundkey an
array with AES round key values.

(*state) [i][j] ~= RoundKey[K];

The LEON3 assembly code for this C includes 5 instructions.
The target for fault injection is affecting register %gl1. Therefore,
we injected clock glitches during the execution of 1dub [ %04 +
Oxb 1, %gl instruction.

1d [ %03 + 0xb0 1, %od //*state

ldub [ %00 + Oxb ], %05 // RoundKey[K]
ldub [ %o4 + Oxb 1, %gl //(xstate)[i] [k]
xor %gl, %hob, gl

stb  %gl, [ %o4 + 0xb ]

We implemented two different security policies to protect the
AES software. The first policy (Fig. [TT) restores the pre-fault sta-
tus of the program and resumes the encryption. We call this pol-
icy FAME-Resume. The second policy (Fig. [[2) is called FAME-
KeyChange. It changes the secret key and starts a new encryption
with a fresh key. In this work, we used a fixed, known value as the
fresh key. Thus, we expect to see correct results for execution of
the target program on the FAME prototype. In contrast, we expect
faulty outputs from the target program running on the unprotected
LEON3 because of fault injection.

During our experiments, we injected 68 clock glitches with dif-
ferent glitch widths. We changed glitch width from 16ns to Sns
with 162ps step size. Figure [I3]shows the glitchy clock and the
alarm signal for the glitch width of 6.8ns. As it is seen, the alarm
is raised in the cycle that follows the glitch. In the unprotected
prototype, we successfully captured 10 faulty ciphertexts, and then,
extract the key byte by launching the DFIA attack. Our trap han-
dlers successfully recovered the fault effects and output the correct
results for every fault injection. Therefore, we were not able to
collect faulty ciphertexts required for DFIA. As a result, we were
not able to extract the key when we used FAME.

@3 Glitch

Figure 13: Clock glitch injection and alarm signal generation

Table 1: Hardware Overhead of FAME Extensions

# Slice LUTs # Slice Regs
Total | Overhead | Total | Overhead
LEONS3 (Unprotected) 3435 - 1275 -
LEON3 + FCU,FRRs 3691 7.4% 1456 14.2%
LEONS3 + FCU,FRRs,FDU | 3744 8.9% 1459 15.2%

6.3 Hardware Overhead

To evaluate the hardware overhead of FAME, we mapped our
FAME design into a Xilinx Spartan6 (XC6SLX75) FPGA. We ob-
tained area and timing results for (i) a LEON3 implementation
without FAME extensions; (if) a LEON3 implementation with the
FCU and FRRs; and (iii) a LEON3 implementation with the FCU,
FRRs, and FDU.

The maximum operating frequency of all implementations is 62.5
MHz. This shows that FAME extensions incur no timing over-
head. Table [T]lists the obtained area results. Adding the FCU and
FRRs causes 7.4% and 14.2% increase in the number of LUTs and
FFs, respectively. Adding the FDU incurs an additional 1.5% and
1% increase in the number of LUTs and FFs, respectively. As a
result, FAME provides fault-attack resistance without any timing
overhead and with a low area overhead.

6.4 Software Trap Overhead

Table [2] displays the overhead of the trap handler in terms of
clock cycles and code footprint (Bytes). The results were taken for
encryption a block of data (16 Bytes) with AES algorithm. The
footprint includes the text, data and bss sections of the program.

For each detected fault injection attempt, the overhead of FAME-
Resume in performance and footprint is 1.01% and 0.59%, respec-
tively. The performance and footprint overhead of FAME-KeyChange
is 2.35% and 0.71%, respectively. On the other hand, researchers
have shown that the performance overhead of the well-known soft-
ware countermeasures for full protection of AES (ID, IT and IS) is
97%-239% [6}24]. The footprint overhead of these countermea-
sures is 89.9%—-200% [6L124]]. Therefore, the overhead of FAME is
much lower compared to other software techniques. Furthermore,
the code redundancy in other techniques is always executed even
if no fault injection attempt happens. However, the FAME trap
handler is only invoked when the FDU detects a fault.

7. CONCLUSIONS

FAME combines fault detection in hardware and fault response
in software. This allows low-cost, performance-efficient, and flex-



Table 2: Software Overhead of FAME Extensions

# Cycles Footprint(Bytes)
Total | Overhead | Total | Overhead
AES (Unprotected) | 17631 - 25964 -
FAME-Resume 17810 1.01% 26116 0.59 %
FAME-KeyChange | 18045 2.35% 26148 0.71%

ible integration of hardware and software techniques to mitigate
fault attack risk. FAME is a generic solution, applicable to existing
embedded processors.

FAME is low-cost as it uses redundancy to protect only a small
subset of the processor state (i.e, FRRs) and a small portion of
the embedded software (i.e, trap handler). FAME extensions do
not bring any timing overhead on the processor hardware. On
the software side, FAME affects the performance only if a fault
injection is detected. FAME enables a flexible and application-
specific trap handler, which can be adjusted for the security needs
of the application.
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