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• Threat model expands from software into hardware. 

Embedded Systems are Everywhere 
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•  Inject engineered faults into with a specific security objective in mind 

Fault Attacks on Embedded Software 
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•  Inject engineered faults with a specific security objective in mind 
• Analyze fault response of  the software to break the security 
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Fault Attacks on Embedded Software 



• May enable bypass of  security checks/actions 
 
 
 
 

Why are Faults a Security Issue? 
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Instruction skip 

Phone is unlocked  
even if  userPin is wrong 



• May enable leakage of  secret information  
• Even correct output may leak the secret information. 

Why are Faults a Security Issue? 

//	
  Elliptic	
  Curve	
  Cryptography
//	
  	
  (Simplified)	
  Scalar	
  Multiplication
…
Q[0]	
  =	
  2Q[0];
Q[1]	
  =	
  Q[0]	
  +	
  P;
Q[0]	
  =	
  Q[key_bit];
return	
  Q[0];

Inject a fault into P 

If  the fault does not affect the 
output, key_bit is 0. 



• Fault handling can be separated into Fault Detection and Fault Response  

• Fault Detection: 
•  It must be low-latency 
•  It must be hard-to-bypass 
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Hardware Fault Detection 

How should We Handle Faults? 



• Fault handling can be separated into Fault Detection and Fault Response  

• Fault Detection: 
•  It must be low-latency 
•  It must be hard-to-bypass 

• Fault Response: 
•  It must be application-specific 
•  It must be adaptive 

How should We Handle Faults? 
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Hardware Fault Detection 

Software Fault Response 



• Fault handling can be separated into Fault Detection and Fault Response  

• Fault Detection: 
•  It must be low-latency 
•  It must be hard-to-bypass 

• Fault Response: 
•  It must be application-specific 
•  It must be adaptive 

• Communication between Fault Detection and Response 
•  SW Fault Response must be aware of  HW fault status 
•  Processor HW must have features to support  

fault-attack resistant execution of  SW Fault Response 

How should We Handle Faults? 
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Hardware Fault Detection 

Software Fault Response 

HW/SW Approach 



alarm 

Fault 
Detection Unit 

Fault 
Control Unit 

• Combination of  HW/SW extensions 

• Captures faults using fault detectors in HW level 

• User-defined fault policy in SW level 

• Fault-attack resistant execution of  fault policy 

•  Status & recovery information to fault handler  

 

Overview of  FAME 
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State 
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Operation of  FAME - 1 
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Operation of  FAME - 2 
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Operation of  FAME - 3 
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•  Locks down FRRs 

•  Aborts Memory/Register File Writeback 

•  Annuls Instructions in the Pipeline 

•  Switches processor to safe mode 

•  Initiates a non-maskable trap 

Operation of  FAME - 4 
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Operation of  FAME - 4 
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Operation of  FAME - 5 



Minimal Trap Handler 
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•  Protects against setup time violation attacks 
•  Clock/voltage glitching 
•  Voltage underfeeding 

•  Extends a Leon3 processor to FAME 
•  32-bit, 7-stage RISC Pipeline 

•  Implemented and tested on a Spartan6 FPGA of  a SAKURA-G 
board 

Prototype Design: FAME against Time Violation 
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Fault Injection and Evaluation Setup 
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• Hardware Overhead (9% logic, 15% regs) 

•  Software Overhead (application dependent) 

Case Study: The Cost of  FAME 
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Component # LUTs # Registers 

LEON3 (baseline) 3,435 1,275 

FCU and FRR 256 (7.5%) 181 (14%) 

FDU 53 (1.5%) 3 (1%) 

Application # Cycles Footprint (Byte) 

AES (baseline) 17,631 25,964 

AES + fault-Resume 17,810 (+1%) 26,116 (+0.6%) 



• FAME provides a HW/SW solution to handle fault attacks: 
•  Low-cost 
•  Performance-efficient 
•  Adaptive 
•  Backward-compatible 

• FAME is generic 
•  Can support multiple fault detectors/sources 
•  Can support multiple CPU architectures 

Conclusions 
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Thank you! 



•  Full fault-tolerance 
•  Information, temporal, or spatial redundancy 
•  Either in Software or Hardware 

 
 

•  Detect-and-Despair 
•  Mute/Lock the device 
•  Initiate a hard-reset event 
•  Kill/Destroy the device 

How do Existing Methods Handle Faults? 
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Adaptive  

Adversary 

Disable 

Fault Response 

Expensive 

Multiple  

Fault Injection 



Related Work 

•  Software countermeasures 
•  Instruction Duplication, Application-specific redundancy, Concurrent Error 

Detection 
•  Performance Hit and increased footprint 

•  Fault tolerant design 
•  Redundant hardware design (similar overhead) 

•  Secure Processors 
•  Memory integrity, confidentiality, attestation, isolation, ... 
•  Do not address faults 
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How do FRRs Maintain the Backup State? 
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• FRR allow to rewind the selected processor state one clock cycle, just before 
the fault was injected. 

• Minimum Content of  FRR: 
•  Return address to the interrupted program 
•  Processor status register 
•  Register file inputs of  write- back stage 



How do FRRs Maintain the Backup State? 
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• FRR allow to backtrack selected processor state one clock cycle, before the 
fault was detected. 

• Minimum Content of  FRR: 
•  Return address to the interrupted program 
•  Processor’s status register 
•  Register file inputs of  write- back stage 



Fault Detection Unit 

•  Timing Violation Detector 
•  caused by glitches 
•  caused by voltage starving 

•  Not limited to glitches: 
•  Optical, EM, overvoltage, .. detectors 
•  Memory/Register checksum 
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Operation of  FAME - 5 



• May enable leakage of  secret information by altering the data flow 
 

Why are Faults a Security Issue? 

//	
  (Simplified)	
  AES	
  AddRoundKey
…
state	
  =	
  secretKey	
  ^	
  state;
ciphertext	
  =	
  state;
return	
  ciphertext;

Zeroize the state 

Ciphertext will be equal to 
secretKey 


