
FAME: Fault-attack Aware Microprocessor Extensions
for Hardware Fault Detection and Software Fault Response

This research was supported in part through the NSF Grant 1441710, and in part through the SRC.

HASP 2016

Bilgiday Yuce, Nahid Farhady Ghalaty, Chinmay Deshpande, Conor Patrick,
Leyla Nazhandali, Patrick Schaumont

Virginia Tech

• Threat model expands from software into hardware.

Embedded Systems are Everywhere

2

•  Inject engineered faults into with a specific security objective in mind

Fault Attacks on Embedded Software

3

•  Inject engineered faults with a specific security objective in mind
• Analyze fault response of the software to break the security

4

Fault Attacks on Embedded Software

• May enable bypass of security checks/actions

Why are Faults a Security Issue?

int	
 	
 	
 pinCheck	
 (int	
 userPin)	
 	
 	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (userPin	
 ==	
 devicePin)	
 	
 	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 unlockPhone();

	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 0;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 else	
 	
 	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 lockPhone();

	
 	
 	
 	
 	
 	
 	
 	
 return	
 -­‐1;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }
}

Instruction skip

Phone is unlocked
even if userPin is wrong

• May enable leakage of secret information
• Even correct output may leak the secret information.

Why are Faults a Security Issue?

//	
 Elliptic	
 Curve	
 Cryptography
//	
 	
 (Simplified)	
 Scalar	
 Multiplication
…
Q[0]	
 =	
 2Q[0];
Q[1]	
 =	
 Q[0]	
 +	
 P;
Q[0]	
 =	
 Q[key_bit];
return	
 Q[0];

Inject a fault into P

If the fault does not affect the
output, key_bit is 0.

• Fault handling can be separated into Fault Detection and Fault Response

• Fault Detection:
•  It must be low-latency
•  It must be hard-to-bypass

7

Hardware Fault Detection

How should We Handle Faults?

• Fault handling can be separated into Fault Detection and Fault Response

• Fault Detection:
•  It must be low-latency
•  It must be hard-to-bypass

• Fault Response:
•  It must be application-specific
•  It must be adaptive

How should We Handle Faults?

8

Hardware Fault Detection

Software Fault Response

• Fault handling can be separated into Fault Detection and Fault Response

• Fault Detection:
•  It must be low-latency
•  It must be hard-to-bypass

• Fault Response:
•  It must be application-specific
•  It must be adaptive

• Communication between Fault Detection and Response
•  SW Fault Response must be aware of HW fault status
•  Processor HW must have features to support

fault-attack resistant execution of SW Fault Response

How should We Handle Faults?

9

Hardware Fault Detection

Software Fault Response

HW/SW Approach

alarm

Fault
Detection Unit

Fault
Control Unit

• Combination of HW/SW extensions

• Captures faults using fault detectors in HW level

• User-defined fault policy in SW level

• Fault-attack resistant execution of fault policy

•  Status & recovery information to fault handler

Overview of FAME

10

Software
Hardware

Fault
Response Regs.

Fault
Trap Handler

Fault-free
State

Fault
Policy

Operation of FAME - 1

11

12

Operation of FAME - 2

13

Operation of FAME - 3

14

•  Locks down FRRs

•  Aborts Memory/Register File Writeback

•  Annuls Instructions in the Pipeline

•  Switches processor to safe mode

•  Initiates a non-maskable trap

Operation of FAME - 4

15

Operation of FAME - 4

16

Operation of FAME - 5

Minimal Trap Handler

17

•  Protects against setup time violation attacks
•  Clock/voltage glitching
•  Voltage underfeeding

•  Extends a Leon3 processor to FAME
•  32-bit, 7-stage RISC Pipeline

•  Implemented and tested on a Spartan6 FPGA of a SAKURA-G
board

Prototype Design: FAME against Time Violation

18

Fault Injection and Evaluation Setup

19

• Hardware Overhead (9% logic, 15% regs)

•  Software Overhead (application dependent)

Case Study: The Cost of FAME

20

Component # LUTs # Registers

LEON3 (baseline) 3,435 1,275

FCU and FRR 256 (7.5%) 181 (14%)

FDU 53 (1.5%) 3 (1%)

Application # Cycles Footprint (Byte)

AES (baseline) 17,631 25,964

AES + fault-Resume 17,810 (+1%) 26,116 (+0.6%)

• FAME provides a HW/SW solution to handle fault attacks:
•  Low-cost
•  Performance-efficient
•  Adaptive
•  Backward-compatible

• FAME is generic
•  Can support multiple fault detectors/sources
•  Can support multiple CPU architectures

Conclusions

21

22

Thank you!

•  Full fault-tolerance
•  Information, temporal, or spatial redundancy
•  Either in Software or Hardware

•  Detect-and-Despair
•  Mute/Lock the device
•  Initiate a hard-reset event
•  Kill/Destroy the device

How do Existing Methods Handle Faults?

23

Adaptive

Adversary

Disable

Fault Response

Expensive

Multiple

Fault Injection

Related Work

•  Software countermeasures
•  Instruction Duplication, Application-specific redundancy, Concurrent Error

Detection
•  Performance Hit and increased footprint

•  Fault tolerant design
•  Redundant hardware design (similar overhead)

•  Secure Processors
•  Memory integrity, confidentiality, attestation, isolation, ...
•  Do not address faults

24

How do FRRs Maintain the Backup State?

25

• FRR allow to rewind the selected processor state one clock cycle, just before
the fault was injected.

• Minimum Content of FRR:
•  Return address to the interrupted program
•  Processor status register
•  Register file inputs of write- back stage

How do FRRs Maintain the Backup State?

26

• FRR allow to backtrack selected processor state one clock cycle, before the
fault was detected.

• Minimum Content of FRR:
•  Return address to the interrupted program
•  Processor’s status register
•  Register file inputs of write- back stage

Fault Detection Unit

•  Timing Violation Detector
•  caused by glitches
•  caused by voltage starving

•  Not limited to glitches:
•  Optical, EM, overvoltage, .. detectors
•  Memory/Register checksum

27

28

Operation of FAME - 5

• May enable leakage of secret information by altering the data flow

Why are Faults a Security Issue?

//	
 (Simplified)	
 AES	
 AddRoundKey
…
state	
 =	
 secretKey	
 ^	
 state;
ciphertext	
 =	
 state;
return	
 ciphertext;

Zeroize the state

Ciphertext will be equal to
secretKey

