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ABSTRACT 
Intel® Software Guard Extensions (Intel® SGX) SGX2 extends the 
Intel® Software Guard Extensions (SGX) instruction set and enables 
software developers to dynamically manage memory within the SGX 
environment.  This paper reviews the current SGX Software Run-
Time Environment and proposes additions to the framework which 
will allow developers to benefit from features enabled by SGX2 such 
as dynamic heap management, stack expansion, and thread context 
creation. 

1 INTRODUCTION 
Intel® Software Guard Extensions (SGX) Technology allows 
software to create an execution environment with confidentiality and 
integrity protection.  The instructions used to create this protected 
area, also known as an ‘enclave’, are described in [1].  This initial set 
of instructions require that all enclave memory be loaded and verified 
during enclave build time and before code is permitted to execute 
within the enclave.  As described in [2], this imposes some 
limitations on enclave developers.  

All enclave memory must be committed at enclave build time.  
This requires the developer to predict and use maximum heap and 
stack sizes in the enclave build.  Likewise, additional code modules 
cannot be dynamically loaded into the enclave environment after 
enclave build.  This increases enclave build time and limits the 
enclave’s ability to adapt to changing workloads.   

Additionally, page protections cannot be changed for an enclave 
memory.  Executable code containing relocations must be loaded as 
Read, Write, and Execute (RWX) and remain that way for the life of 
the enclave.  This also limits the capabilities of garbage collectors 
and dynamic translators or just-in-time (JIT) compilers with the 
enclave. 

An extension to the SGX instruction set is designed to overcome 
these limitations.  SGX2 Extensions give software the ability to 
dynamically add and remove pages from an enclave and to manage 
the attributes of enclave pages. 

In this paper, we review a programming model for SGX 
enclaves and how it can be adapted to take advantage of SGX2 
extensions.  Specifically, we discuss the enclave layout and the 
loading of enclaves and why dynamic memory management is of 
specific importance in these areas.  We will also review SGX Run-
Time Processes for calling into and out of an enclave and processing 
enclave generated exceptions with respect to how these may be 
adapted to take advantage of the new instructions.   

This paper is divided into several sections.  In Section 2, we will 
first present an overview of the SGX Run-Time environment 
including the enclave layout, loading process, and control and 
communication paths.  In Section 3, we will review the SGX2 
instructions and how they are used.  Section 4 provides a 
programming model for dynamic memory management within an 
enclave and, finally, Section 5 describes the implementation of 
several features enabled by dynamic memory management. 

Throughout this paper, we will refer to the initial set of SGX 
instructions as SGX1 and the new extensions allowing dynamic 
memory management as SGX2. 

2 SGX Run-Time Environment Overview 
An introduction to a programming model and an SGX Run-Time 
Environment are provided in [3] and [4]. This model supports 
development and execution of enclaves on platforms supporting 
SGX.  We will provide a brief overview of several concepts involved 
in programming and executing enclaves using SGX1.  These include: 

• Enclave Layout and Signing 
• Run-time Environment 
• Communication and Control Paths 

SGX2 Extensions will allow us to build off of these concepts to 
produce a richer programming model. 

 Enclave Layout and Signing 
An SGX Enclave executes within the memory space of an 
application in a special area of physical memory known as Enclave 
Page Cache (EPC).  The Intel® Software Guard Extensions SDK 
(Intel® SGX SDK) uses a paradigm of an enclave as a dynamically 
loaded module, such as a Dynamic Link Library (.dll) in the 
Windows* OS or a Shared Object (.so) in the Linux* OS.  The 
developer can program an Enclave Library using common 
programming toolchains for Windows* OS and Linux* OS that have 
been enhanced with Intel SGX SDK tools and libraries.  

Merely running the Enclave Library code within the SGX 
environment is not sufficient to protect user data.  The enclave must 
also host other data segments (also referred to as enclave runtime 
components in later sections) related to program execution.  These 
are shown in Figure 1 
• Enclave Heap: if the enclave needs to dynamically allocate 

memory buffers, then these buffers should be allocated on a 
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heap within the enclave.   
• Thread Context: Each thread that enters the enclave 

environment needs several constructs to operate within the 
enclave.  These constructs are collectively referred to as a 
Thread Context.  The enclave may contain more than one 
Thread Context. 

The Thread Context consists of several components.  These are: 
• Thread Control Structure (TCS): the TCS is an SGX defined 

data structure which contains metadata used by the HW to 
transition into and out of the enclave.   

• Thread Local Storage: Thread Local Storage is a set of SW 
defined objects used by the thread and accessible to the code.  
This includes a Thread Environment Block used by compilers 
and run-time libraries, thread local variables, and the SGX State 
Save Area (SSA).  The SSA is used to store register context 
when the thread asynchronously exits the enclave due to an 
event such as an exception or an interrupt. 

• Thread Stack: Enclave threads should protect stack variables by 
using a stack located within the enclave. 

 
One drawback related to the layout of the enclave in SGX1 

relates to these additional data segments.  The number of these 
sections and their size must be statically assigned by the developer.  
SGX1 does not allow pages to be added to the enclave after it has 
been initialized and prepared to execute.  Thus, the developer must 
define a static heap size, static number of thread contexts each with 
a static heap size for the enclave. 

In SGX1, all pages comprising the enclave image must be 
loaded before the enclave can execute.  This is required because all 
pages in the enclave image are measured to ensure the integrity of 
the enclave.  The measurement of the enclave in the SGX 
environment and certain other attributes define the identity of the 
enclave.  Entities communicating with the enclave will want 
attestation to this identity before sharing a secret with the enclave. 

The Intel SGX SDK provides the SGX Signing Tool (hereto 
referred to as Signing Tool) which provides two basic functions: 
• It adds metadata information to a special section in the enclave 

binary file.  The metadata section contains enclave information 
and defines the extra segments including heap size, stack size, 
and number of threads in the enclave layout. 

• It constructs an image of the enclave and measures its contents, 
                                                                 
1 SIGSTRUCT is an SGX defined structure described in [1]. 

then uses the measurement and other information to construct 
an SGX SIGSTRUCT 1.  The SIGSTRUCT is then digitally 
signed and added to the metadata information in the enclave 
binary file. 

 Run-Time Environment 
Figure 2 below shows the three primary components responsible for 
managing SGX enclaves.  The components execute in three different 
environments – the Kernel Module (Driver) executes in Ring 0, the 
Untrusted Run-Time System (uRTS) runs in untrusted Ring 3 
Application space, and the Trusted Run-Time System (tRTS) runs 
inside the enclave. 

These elements work together to perform two primary 
functions: 
1. Enclave Management: this involves enclave loading, unloading, 

and page-swapping.   
2. Call Management: manages calls into and out of the enclave 

including calls to handle enclave exceptions. 

 
Figure 2: Intel® SGX Run-Time Environment 

Enclave Management 
To load an enclave, the Untrusted Run-Time System (uRTS) parses 
the enclave library file and creates an image of the enclave. The 
image includes both the loadable program segments from the enclave 
executable file (.dll or .so), the heap, and one or more thread contexts 
constructed from the metadata. The uRTS then sends a series of 
input/output control (IOCTL) messages containing enclave 
information and the enclave image to the Kernel Module (SGX 
Driver).  The SGX driver uses SGX Ring0 instructions to create an 
enclave, add each page to EPC, measure pages as they are added to 
EPC, and finally to initialize the enclave for execution.  

The loading of the enclave is completed by calling into the 
Trusted Run-Time System (tRTS) within the enclave. The tRTS is a 
static library built into the enclave image. Functions that a normal 
program loader can perform on the program module during loading, 
such as relocating address references, must be performed by the 
enclave on itself (if address relocations were performed on the 
enclave image before it was loaded into EPC, then the measurement 
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of the enclave would become dependent on the enclave load address.  
The measurement is crucial to establishing the identity of the 
enclave). The tRTS performs these functions and prepares the 
enclave to execute.  

Unloading of the enclave is done through an uRTS function 
which calls the driver remove all enclave pages.  

The driver uses SGX instructions to swap pages from the EPC 
to a backing store in regular memory.  It then reloads pages back to 
EPC when a page faults (#PF) are generated from an access to 
swapped out pages.   

Call Management 
A call into the enclave, referred to as an ECall, is made through the 
uRTS.  The uRTS selects a thread context to employ, configures a 
structured exception handler (Windows* OS) or signal handler 
(Linux* OS), and then issues an ENCLU[EENTER] instruction.  
This passes the processing into a tRTS function within the enclave.  
The tRTS function prepares the thread to execute securely within the 
enclave before execution is passed to a specific user defined function.  
The function return path exits the enclave via the ENCLU[EEXIT] 
instruction and passes back through the uRTS. 

Exceptions that occur within the enclave which are not handled 
by the kernel, will be caught by the uRTS handler.  The uRTS will 
pass exceptions into the enclave where they may be handled by the 
tRTS or be passed to user defined handlers within the enclave.   

Calls out of the enclave (referred to as OCalls) originate in the 
tRTS and are received by the uRTS and then routed to the correct 
routine in the application.  An OCall is essentially the reverse of an 
ECall. 

3 Communication and Control Paths 

 

Figure 3: Communication and Control Paths 

The protected environment of Intel SGX adds complexity to the 
management of enclave memory.  The Kernel may not directly 
manage or modify data within the enclave.  Likewise, the enclave 
may not directly call OS functions.  To explain how the three 
components of the SGX Run-Time Environment, as shown in Figure 
3, may work together to manage enclave memory, we must first 
explain the unique control and communication paths between them. 

As previously explained, the uRTS and tRTS may communicate 
via ECalls and OCalls. 

The uRTS and Driver communicate via: 

• Input/Output Control (IOCTL) Messages from the uRTS to the 
Driver.   

• Linux Signals: the SGX Driver may generate a signal which can 
be caught by a signal handler in the uRTS.  The uRTS can then 
make an ECall into the enclave to effectively handle the signal.  
The Windows* OS does not provide a documented interface for 
a driver to inject an exception into an application to be 
subsequently caught by a structured exception handler. 
The tRTS and the SGX Driver have an indirect method of 

communicating.  In the Linux* OS, the enclave may generate a HW 
Exception such as a #PF which will be routed to the SGX Driver. 
The driver may use the fault type and fault information, such as the 
faulting address in the case of a #PF, to handle the exception. If the 
exception is handled, the driver can return processing to the enclave 
by continuing execution at the faulting instruction. When this is 
done, the execution flow actually jumps into the uRTS which then 
issues an ENCLU[ERESUME] instruction to resume processing at 
the faulting instruction within the enclave.   

If the driver cannot complete the processing of the HW 
Exception, it may generate a Signal to the application, which will be 
caught by the uRTS and handled.  It may also be subsequently passed 
to the tRTS for handling via an ECall.  The tRTS can use information 
stored in the State Save Area (SSA) to either process the exception 
itself or to call a custom handler in the enclave (for information on 
installing a custom handler, see [5].) 

The design of processes to dynamically manage enclave 
memory must consider the strengths and limitations of the 
aforementioned communication and control paths. 

4 SGX2 Dynamic Memory Management 
SGX2 introduces several instructions for the management of enclave 
memory.  The full set of instructions and basic flows for their use are 
described in [1] and [2].  A subset of the instructions are needed for 
dynamic heap management, stack expansion, and thread context 
creation.  These instructions are detailed in Table 1: SGX2 
Instruction for Dynamic Memory Mgmt.. 
 

Leaf function Description 
ENCLS[EAUG] Add a read/write accessible regular 

page to an initialized enclave.  The 
page is added in a ‘pending’ state and 
may not be used until the enclave 
issues EACCEPT on the page. 

ENCLS[EMODT] Modifies the type of an existing EPC 
page 

ENCLU[EACCEPT] Accepts a page or page type 
modifications into the running 
enclave 

ENCLU[EMODPE] Extends access permissions of an 
existing EPC page 

ENCLS[EMODPR] Restricts access permissions of an 
existing EPC page 

ENCLU[EACCEPT
COPY] 

Copies existing EPC page content into 
a PENDING page and accepts the 
page into the running enclave 

Table 1: SGX2 Instruction for Dynamic Memory Mgmt. 

A simple programming model to explicitly add a new page into an 
enclave is detailed in [1].  It is summarized here (note: SGX driver 
and Untrusted Run-Time are substituted for the OS): 
1. The enclave needs a page of memory.  It must keep a record of 

its virtual address space and then record that the page has been 
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reserved.  Then it must make an OCall to the uRTS with the 
page address.  The uRTS will, in turn, send a command to the 
driver. 

2. The SGX Driver should: 
a. Ensure that the address range of the page is available for 

use.  This can be accomplished by the driver keeping 
information on enclave memory allocation or by the driver 
working through OS memory management APIs. 

b. Select a free page within EPC (If needed, evict a page from 
EPC). 

c. Create a PTE and map it to the page within EPC 
d. Issue an EAUG instruction with the address of the page 
e. The page is now added to the enclave, but is in a 

PENDING state.  A regular access to a page in this state 
will generate a #PF.  The page must be accepted by the 
enclave before it can be used. 

3. After the driver completes, it will complete the command and 
return to the uRTS, the uRTS will then complete the OCall to 
return processing back to the enclave.  The enclave must then: 
a. Note in its internal virtual memory space record that the 

page has been committed to the enclave.  This information 
should be used to ensure that a page cannot be added 
multiple times to the enclave. 

b. Issue an ENCLU[EACCEPT] instruction for the page to 
remove it from the PENDING state and allow it to be used 
within the enclave.. 

 

5 SGX2 Programming Model for Dynamic 
Memory Allocation 

This section describes flows that can be used by SGX enclaves to 
expand or create various runtime components (e.g. expand heaps, 
expand stacks, or create thread contexts). 

 Enclave Memory Layout for SGX2 
Section 3 has summarized the flow of committing new EPC pages to 
an existing enclave. In general, virtual address space needs to be 
reserved first before any EPC pages can be added.  

Unlike a regular application where the virtual address space is 
managed solely by the OS kernel, an enclave’s virtual address range 
is part of its measurement and must be allocated at enclave load time. 

Figure 4 shows an example memory layout of an SGX2 enclave. 
When compared to Figure 1 the additions are the gray areas which 
represent reserved virtual address ranges for expandable 
components. For example, the enclave heap is comprised of the green 
bottom half and the gray top half. The bottom half is the current heap 
(with pages committed) while the top half marks an area for heap 
expansion. A similar method applies to stacks, except that they are 
expanding downwards (because ESP/RSP moves towards lower 
addresses on “push” operations). There is also reserved virtual 
address space, depicted in the gray boxes towards the top of the 
enclave virtual range, to allow more thread contexts to be committed 
at runtime. 

 
Figure 4: Enclave Layout with EDMM Support 

 #PF Based Page Allocation 
From Section 4, we see that page allocation can is essentially a 3-
step process: 
1. The enclave requests additional EPC pages to be mapped at 

specified addresses. 
2. The uRTS (with help from the SGX driver) commits (i.e. 

allocates, maps and invokes ENCLS[EAUG] on) EPC pages at 
the requested addresses. 

3. The enclave accepts the newly committed pages by invoking 
ENCLU[EACCEPT]. 
As described in section 4 the aforementioned steps can be 

encapsulated into an OCall for the enclave to invoke when needed. 
However, OCalls have a high overhead. It is costly to perform a call 
out to the uRTS (via ENCLU[EEXIT]), send an IOCTL to the driver, 
and then return back to the enclave.  Moreover, it is difficult to 
expand an already-overflowed stack using an OCall as the OCall 
requires stack space to execute. 

A better approach is to use a page fault (#PF) to trigger the page 
allocation process.  This is similar to how today’s operating systems 
expand heaps and stacks for regular applications.  That is: 
1. The enclave accesses a yet-to-be-committed page as if that page 

existed. 
2. A #PF results, and causes the SGX driver to commit a new page 

at the faulting address. 
3. The enclave is resumed (by ENCLU[ERESUME]) and the 

faulting instruction is retried, as if no #PF had ever occurred. 
The above process may seem complete, but newly committed 

pages in SGX2 must be accepted by the enclave before they may be 
accessed. The faulting instruction that is retried in step #3 will fault 
again.  However, there is one exception. If the faulting instruction is 
an ENCLU[EACCEPT], then it will complete the process.  In fact, 
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ENCLU[EACCEPT] can be used to drive the page allocation process 
as described below. 
1. The enclave determines the address at which a new EPC page 

needs to be committed, and executes ENCLU[EACCEPT] on 
that address. 

2. A #PF results, and causes the SGX driver to commit a new EPC 
page at the faulting address. 

3. The enclave is resumed to retry ENCLU[EACCEPT], which 
will succeed this time. 
The #PF based approach makes the trusted code efficient and 

extremely simple (i.e. as simple as only one instruction – 
ENCLU[EACCEPT]).  

This method also makes it feasible to grow a stack, except that 
the SGX driver must generate an exception to the application after 
committing a page.  The enclave’s (trusted) exception handler can be 
designed to avoid the use of the thread’s stack, unlike an OCall 
approach.  

One drawback in the aforementioned process is that only one 
page is allocated for each #PF. This can be a performance drag 
should the enclave try to allocate a range of pages. The concept of a 
“Dynamic Region”, described next, is targeted to improve the 
efficiency by reducing the number of #PFs necessary for batch 
allocations. 

 Dynamic Region 
Given the overhead of processing an exception and subsequently 
returning to the enclave via ENCLU[ERESUME], it would be 
desirable to have the enclave be able to request a range of continuous 
pages and then have the driver commit the entire range of pages at 
one time.  

The SGX driver generally needs to know the following in 
addition to the fault address, for both correctness and efficiency. 
• Whether or not the fault address is within an expandable enclave 

component (e.g. heap, stack, etc.). – A #PF may result from 
many reasons, and the driver needs to tell whether a #PF is a 
page allocation request or not. 

• The usage of that expandable component, such as heap, stack, 
executable code, etc. – By exploiting the usage, the SGX driver 
may be able to “predict” which other pages will be requested in 
the near future, therefore avoid additional #PFs. 
The Dynamic Region is a data structure which provides the 

SGX driver supplemental information regarding #PFs. The SGX 
driver maintains an array of dynamic region structures per enclave. 
Each dynamic region structure contains the following information.   
• Range of the region – Defines the address range of the region.  

#PFs that fall within the range should be handled in accordance 
with the information defined in the dynamic region structure. 

• Growing direction – This is a one-bit flag, either up or down.  
o A growing-up region is a range in which the enclave is 

expected not to request a page at an address unless pages 
between the lower bound and that address have all been 
allocated. A heap is usually a growing-up region.  

o In contrast, a growing-down region is a range in which the 
enclave is expected not to request a page at an address 
unless pages between that address and the upper bound 
have all been allocated. Stacks on x86/x64 architectures 
are growing-down regions, for example. 

• Allocation Alignment – This is a mask to specify the alignment 
for chunk allocations.  The driver will add pages from the #PF 
address in the grow direction until the page address aligns with 
the Allocation Alignment (e.g. the AND of the page address and 
the Allocation Alignment mask is zero.)   A mask of -1 (i.e. all 

1’s) means no alignment, hence chunks are considered to 
start/end at lower/upper bound of a growing-up/down region.  
In contrast, a mask of 0 (i.e. all 0’s) means no chunks, hence the 
region is “discrete” regardless growing direction and only a 
single page is committed per #PF. 

The SGX driver uses the following algorithm to determine the 
appropriate action to take for each #PF:  
1. Locate the dynamic region that contains the fault address. If no 

dynamic region is found, the current #PF is not a page 
allocation request and the process should complete by 
generating an exception to the application; otherwise 

2. Commit the page containing the #PF. 
3. For a growing-up region, keep committing pages towards lower 

addresses until: 
a. An existing page is reached; or 
b. The lower bound of the region is reached; or 
c. The logical AND of the current address and the region’s 

alignment mask yields 0 (zero). 
4. For a growing-down region, keep committing pages towards 

higher address until: 
a. An existing page is reached; or 
b. The upper bound of the region is reached; or 
c. The logical AND of the next address and the region’s 

alignment mask yields 0 (zero). 

 Implicit EPC Allocation 
So far we have discussed EPC allocations initiated explicitly by an 
enclave, such as when a heap manager expands a heap when it cannot 
satisfy a malloc() request. In contrast, implicit EPC allocations are 
initiated without an enclave’s awareness.  An implicit EPC allocation 
must be used when a thread exceeds its committed stack and the stack 
must expand beyond the lower bound of the committed area. The 
major challenge in implicit allocations is when and how to accept 
newly committed pages given the faulting instruction is not 
ENCLU[EACCEPT]. The solution lies in enclave exception 
handling. 

Section 3 describes how HW exceptions such as #PF may be 
ultimately passed to the enclave for processing. Again from high 
level, the process of an implicit EPC allocation could be described as 
below. 
1. The enclave tries to access a non-existing page “accidentally”, 

and triggers a #PF. 
2. The SGX driver intercepts the #PF, and commits a page (or 

pages depending on the dynamic region’s Grow Direction and 
Allocation Alignment). 

3. The SGX driver notices at this point that the allocation is 
implicit (more details follow), and injects an exception (This is 
OS dependent.  A SIGBUS is used in Linux) to the faulting 
applications. 

4. The application or more precisely, the uRTS, handles the 
exception (or signal on Linux* OS) by making an ECall to the 
enclave.  This ECall is made using the same enclave Thread 
Context (identified by a TCS) that faulted. 

5. The enclave’s exception handler supplied by the tRTS (The 
tRTS gets the first chance at an exception within the enclave) 
handles the exception by accepting the newly committed pages, 
and then exits back to the application’s exception/signal 
handler. 

6. The enclave is resumed (by ENCLU[ERESUME] instruction), 
and tries the faulting instruction, which will succeed this time. 

One may wonder how the SGX driver is able to tell implicit 
allocations from explicit ones in step #3 above.  This is described in 
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detailed in the following subsection. 

Distinguishing Explicit and Implicit Allocations 
The trick to distinguish the explicit from implicit allocations lies in 
the logical assumption that software, if coded correctly, never reads 
uninitialized memory buffers.  In practice, a page being requested 
must not exist at the time of the request, hence it could not contain 
any initialized memory buffers, and thus its first access (as an 
implicit allocation request) by software must be a Write access; 
otherwise, the access would be due to a software bug. In contrast, an 
explicit allocation is triggered by ENCLU[EACCEPT], which results 
in  a Read access per [1]. 

Below summarizes how implicit allocations are identified by 
the SGX driver upon receiving a #PFs within a dynamic region: 
• If the access attempted was a Read Access (per error code 

associated with the #PF, see [1]), then it is considered an explicit 
allocation – No exception/signal will be injected. 

• Otherwise, it is considered an implicit allocation – An 
exception/signal will be injected to the faulting application. 

One thing worth mentioning, is that it’s possible for a buggy enclave 
to read a non-existent page within a heap or stack.  This access will 
then be misidentified as an explicit EPC allocation by the SGX 
driver. The driver may be induced to commit pages (via 
ENCLS[EAUG]) into the enclave; however, the pages will not be 
accessible because they will not have been accepted by the enclave.  
When the faulting instruction is retried, it will #PF again.  Given that 
the page has already been committed this time, the fault will be 
considered as an access violation within the enclave. 

Enclave Exception Handling 
The enclave must be able to invoke ENCLU[EACCEPT] in its 
exception handler to accept newly committed pages before the pages 
can be successfully accessed.. 

The SGX architecture has limitations around nested exception 
handling. Specifically, SGX uses SSA (State Save Area) frames to 
save processor context on asynchronous exits (i.e. enclave exits due 
to interrupts or exceptions), and the number of SSA frames 
associated with a particular Thread Context is fixed.  Each call into 
the enclave via EENTER must reserve on SSA frame to handle a 
subsequent interrupt or exception.  Thus, nested exceptions can be 
handled only to the depth specified by the number of SSA frames. 
The latest version of Intel SGX SDK supporting SGX1 allocates 2 
(two) SSA frames per Thread Context, meaning nested exceptions 
cannot be supported. That said, no implicit EPC allocations could be 
supported in the enclave exception handler because there would not 
be an SSA frame available for entering the enclave again to accept a 
page requested during the processing of an initial enclave exception. 
Therefore, caution must be taken not to trigger any implicit 
allocations in the context of the enclave exception handling. In 
practice, the tRTS exception handler can make sure the available 
stack space exceeds a certain (probably configurable) threshold by 
expanding the stack if needed before dispatching custom exception 
handling routines.  Alternatively, the implementation may add one 
more SSA dedicated to handling implicit memory allocations within 
the exception handling context. 
 

6 Implementation of SGX2 Dynamic Memory 
Management 

This section describes three most desired enclave dynamic memory 
management features implemented by Intel SGX SDK. 

 Enclave Signing and Loading 
Before going into details of the dynamic memory management 
features, let’s go over how runtime components (e.g. heap, stacks, 
etc.) are created/reserved and loaded/initialized in an enclave. 

The SGX architecture requires enclaves to be digitally signed, 
and their signatures will be verified at enclave load time (i.e. by 
ENCLS[EINIT] instruction).  Figure 1 and Figure 4 show examples 
of enclave layouts, for SGX and SGX2 respectively.  

Enclave Signing 
As stated in Section 2.1, the Signing Tool provided with the Intel 
SGX SDK can be used to generate digital signatures for enclaves.  
To sign an enclave, the signing tool must construct an image of the 
enclave and measure the image.  As shown in Figure 4, the image is 
composed of both the executable (or loadable) components from the 
enclave .dll or .so file and the runtime components (e.g. heap, stack, 
TCS, etc.).  The format of these components and their characteristics 
such as their range (for heap and stack components) must be 
calculated by the signing tool. The Signing Tool accepts an XML 
file, the “enclave configuration” file, for developers to specify 
parameters (e.g. size, count) of certain components. Loosely 
speaking, the signing tool uses the configuration along with the 
enclave executable image to calculate the locations, attributes (and 
sometimes contents) of all of the enclave pages, then stores the 
resultant information(referred to as enclave “metadata”) into a 
dedicated section (i.e. “.sgxmeta”) embedded inside the executable 
file, measures the page contents/attributes of the resulted enclave in 
the same way as if it were done by the hardware, and finally signs 
(using a user-supplied private key) and stores the measurement along 
with the enclave metadata. 

For SGX2, this schema of the enclave configuration has been 
extended to accommodate parameters relating to reserved address 
space for expandable/creatable components. Newly added 
parameters include, but are not limited to  
• Min/Max heap sizes 
• Min/Max stack sizes 
• Min/Max number of threads 
More information regarding enclave configurations is available in 
[5]. 

Enclave Loading 
Enclave loading is driven by the uRTS, which loads the enclave 
executable file and extracts the location/size information for each of 
the enclave runtime components (and sometimes patches the 
executable image), and invokes (via IOCTL interface) the SGX 
driver for the actual loading of pages into EPC.  

As mentioned in Section 5, the additions (compared to SGX1) 
to the loading process is the dynamic regions that need to be 
conveyed to the SGX driver. Given that the uRTS loader understands 
the locations and usages of the runtime components, the dynamic 
regions are trivial to establish. The SGX driver provides an IOCTL 
interface to accept dynamic regions from the uRTS. Please note that 
dynamic regions are tied to the enclave layout so usually don’t 
change across the lifespan of the enclave. 
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 Dynamic Heap Allocation 

 
Figure 5: Range Allocation by a Single #PF 

The tRTS implementation of malloc()/free() was based on Doug 
Lea’s Malloc or dlmalloc for short (see [6]).  dlmalloc inherently uses 
sbrk() to allocate and free pages.  sbrk() is expected to take a size 
delta (positive number for allocation and negative number for 
deallocation) as input and return the new end address of the heap. 
The tRTS version of sbrk() simply tracks the boundary of the 
allocated portion of the heap, and pushes the boundary higher/lower 
on allocation/deallocation respectively. With SGX2, sbrk() is 
changed slightly to also maintain the boundary between the 
committed and uncommitted portions of the heap and to execute 
ENCLU[EACCEPT] for new pages whenever the allocated 
boundary moves beyond the committed boundary. The following 
summarizes the behavior of sbrk() in a tRTS implementation with 
SGX2 support, assuming the virtual range of the heap has been 
declared as growing-up dynamic region with its alignment mask set 
to -1. 
• Two global variables – heap_allocated and 

heap_committed. 
o heap_allocated tracks the end address of the heap.  It 

is initialized to the lower bound of the heap range. 
o heap_committed tracks the end of the committed region 

of the heap.  It is also initialized to the lower bound of the 
heap range. 

• sbrk() invoked with a positive delta is an allocation request. 
heap_allocated is adjusted  up by the specified delta.  If it 
passes beyond heap_committed: 
1. Set heap_committed to heap_allocated; and 
2. Accept all pages between the old and new values of 

heap_committed. Please note that the page at the highest 
address should be accepted first to reduce the number of 
#PFs (due to the fact that the region is a grow-up region 

and the SGX driver will commit pages up to the #PF 
address). 

• sbrk() is invoked by a negative delta – This is a deallocation 
request. heap_allocated is adjusted down by the specified 
amount. The excess of the committed heap (i.e. pages between 
heap_allocated and heap_committed) could be freed at 
this point. In a future paper we hope to discuss efficient 
algorithms for trimming heaps. 
Figure 5 depicts the sequence taken by sbrk(), as the enclave is 

trying to expand its heap from M to N (where N >M) pages. Please note 
that the subscripts denote the distance of the target page from the 
beginning of the heap, divided by page size. That is, the enclave starts 
with an M-page heap and is trying to expand it to N pages in size by 
requesting pages M through N-1. For optimal performance, the 
enclave does ENCLU[EACCEPT]N-1 first. As described in Section 5.2, 
this results in a #PF which causes the SGX driver to commit pages 
up to the N-1 Page.  It doesn’t matter in what order the rest of the 
pages are committed or accepted. 

 Stack Expansion 
Expanding a stack is trickier than expanding a heap in the sense that 
the enclave has to know when the stack needs expansion. There are 
two approaches in practice: 
1. Handling #PFs resulting from a stack overflow. 
2. Probing the stack using ENCLU[EACCEPT] 
The first approach can be considered a default approach and must be 
implemented to ensure that the run-time is prepared to grow the stack 
at arbitrary points in the enclave when a variable is “pushed” onto 
the stack.  The second method takes advantage of a compiler feature 
which probes the stack whenever function is called with local 
variables in excess of a specific size (usually one page).  In this case, 
the compiler will insert a function that probes the stack to ensure that 
memory is committed for the stack.  For example, the Microsoft* 
Visual C Compiler calls the __chkstk() helper routine to probe the 
stack.  The run-time can make the stack expansion process more 
efficient by inserting an ENCLU[EACCEPT] in the trusted stack 
probe.   

The following summarizes how stack is expanded in a tRTS 
implementation with SGX2 support, assuming the virtual range of 
the stack has been declared as a growing-down dynamic region with 
its alignment mask set to -1. 
• One thread local variable – stack_committed is maintained 

per thread. Please note that it is accessed by its own thread to 
avoid race conditions. It is initialized to the minimal stack size 
specified in the enclave configuration XML file. 

• Probing the stack – The stack probing routine (e.g. __chkstk() ) 
compares ESP/RSP with stack_committed and accepts 
(using ENCLU[EACCEPT]) all pages between them if 
ESP/RSP passes below stack_committed, and then updates 
stack_committed to ESP/RSP. 

• Enclave exception handler – As discussed in Section 5.4, the 
exception handler subtracts a certain amount from ESP/RSP as 
the reserved stack for exception handling, and compares 
ESP/RSP with stack_committed, and accepts all pages 
between them if ESP/RSP is below stack_committed, and 
then updates stack_committed to ESP/RSP. 

 Thread Creation 
Creating a new thread context involves creating all of its 
components, initiating its TCS page and converting it to the page 
type of PT_TCS. 

What comprise of a thread context are summarized below, in 
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the order of their addresses from high to low. 
• SSA – State Save Area for asynchronous exits. There are 

typically two SSA frames, one page each per current SGX 
architecture. 

• TLS – Thread Local Storage, which includes both compiler 
specific per-thread control information and ISV defined TLS 
variable. 

• TCS – Thread Control Structure containing per-thread control 
information needed by the processor to start an enclave thread. 
More information available in [1] 

• Stack. 
Figure 6: Thread Context Components and Initialization depicts 

the composition of a thread context. Given all of the components are 
consecutive in virtual memory and they are all needed before the 
TCS could be entered, they could be considered as a whole a single 
stack, whose bottom (highest address) would then be the SSA1 page. 
 

 
Figure 6: Thread Context Components and Initialization 

Therefore, the creation process could be described below: 
1. The whole thread context should be declared to the SGX driver 

as a growing down region at enclave load time.  
2. The enclave accepts “Stack Page N” (see Figure 6). This causes 

the driver to commit all pages between “Stack Page N” and the 
upper bound of this thread context. 

3. The enclave accepts the rest of the pages (i.e. the TCS, TLS and 
SSA pages) in any order deemed convenient by the 
implementation. 

4. The enclave initializes the content of the TCS page. 
5. The enclave makes an OCall requesting the SGX driver to 

convert the TCS page to the type of PT_TCS. 
a. The uRTS passes the address of the TCS page and the 

requested page type to the SGX driver via IOCTL. 
b. The SGX driver converts the page type by 

ENCLS[EMODT] and issues ENCLS[ETRACK], 
followed by broadcasting an IPI to flush out stale TLB 
entries for all logical processors. 

6. The enclave accepts the page type change using 
ENCLU[EACCEPT]. The new thread context is ready for use 
hereon. 

One more thing worth pointing out is that, unlike expanding heaps or 
stacks, it’s typically the uRTS that determines when additional thread 

contexts are needed (hence created). In practice, the uRTS maintains 
a pool of free threads to be assigned to ECall requests, and initiates 
new thread creation only when the pool has “dried up”. 

7 Future Considerations 
We have seen how three new SGX2 instructions listed in Table 1 can 
be used for heap expansion, stack expansion, and adding thread 
contexts to a running enclave.  This is just a small subset of the 
programming features that can be enabled with SGX2.  Additional 
features that may be explored include, but are not limited to: 
• Heap Contraction with the implementation of page trimming 

made possible by the addition of the ENCLS[EMODT] and 
ENCLU[EACCEPT] instructions. 

• Modification of Page Access Permissions using the  
ENCLS[EMODPR], ENCLU[EMODPE] and 
ENCLU[EACCEPT] instructions 

• The dynamic loading of code either by dynamically loading and 
linking to libraries or by employing Just-in-Time compilers 
within the enclave.  Code loading is made possible with the 
addition of the ENCLS[EAUG] and 
ENCLU[EACCEPTCOPY] instructions. 

In the future, we hope to detail run-time support for these additional 
features. 

8 Summary 
SGX2 Instructions increase the flexibility of the SGX programming 
environment by allowing the programmer to dynamically manage 
memory within the enclave space.  We have shown examples of a 
few run-time enabled features such as heap expansion, stack 
expansion, and the creation of thread contexts.  These features allow 
enclave developers to design their enclaves to more efficiently adapt 
to varying programming workloads.  
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