
1

Intel® Software Guard Extensions (Intel® SGX) Software
Support for Dynamic Memory Allocation inside an Enclave

Bin (Cedric) Xing, Mark Shanahan, Rebekah Leslie-Hurd

Intel Corporation

{cedric.xing, mark.shanahan, rebekah.leslie-hurd }@intel.com

ABSTRACT
Intel® Software Guard Extensions (Intel® SGX) SGX2 extends the
Intel® Software Guard Extensions (SGX) instruction set and enables
software developers to dynamically manage memory within the SGX
environment. This paper reviews the current SGX Software Run-
Time Environment and proposes additions to the framework which
will allow developers to benefit from features enabled by SGX2 such
as dynamic heap management, stack expansion, and thread context
creation.

1 INTRODUCTION
Intel® Software Guard Extensions (SGX) Technology allows
software to create an execution environment with confidentiality and
integrity protection. The instructions used to create this protected
area, also known as an ‘enclave’, are described in [1]. This initial set
of instructions require that all enclave memory be loaded and verified
during enclave build time and before code is permitted to execute
within the enclave. As described in [2], this imposes some
limitations on enclave developers.

All enclave memory must be committed at enclave build time.
This requires the developer to predict and use maximum heap and
stack sizes in the enclave build. Likewise, additional code modules
cannot be dynamically loaded into the enclave environment after
enclave build. This increases enclave build time and limits the
enclave’s ability to adapt to changing workloads.

Additionally, page protections cannot be changed for an enclave
memory. Executable code containing relocations must be loaded as
Read, Write, and Execute (RWX) and remain that way for the life of
the enclave. This also limits the capabilities of garbage collectors
and dynamic translators or just-in-time (JIT) compilers with the
enclave.

An extension to the SGX instruction set is designed to overcome
these limitations. SGX2 Extensions give software the ability to
dynamically add and remove pages from an enclave and to manage
the attributes of enclave pages.

In this paper, we review a programming model for SGX
enclaves and how it can be adapted to take advantage of SGX2
extensions. Specifically, we discuss the enclave layout and the
loading of enclaves and why dynamic memory management is of
specific importance in these areas. We will also review SGX Run-
Time Processes for calling into and out of an enclave and processing
enclave generated exceptions with respect to how these may be
adapted to take advantage of the new instructions.

This paper is divided into several sections. In Section 2, we will
first present an overview of the SGX Run-Time environment
including the enclave layout, loading process, and control and
communication paths. In Section 3, we will review the SGX2
instructions and how they are used. Section 4 provides a
programming model for dynamic memory management within an
enclave and, finally, Section 5 describes the implementation of
several features enabled by dynamic memory management.

Throughout this paper, we will refer to the initial set of SGX
instructions as SGX1 and the new extensions allowing dynamic
memory management as SGX2.

2 SGX Run-Time Environment Overview
An introduction to a programming model and an SGX Run-Time
Environment are provided in [3] and [4]. This model supports
development and execution of enclaves on platforms supporting
SGX. We will provide a brief overview of several concepts involved
in programming and executing enclaves using SGX1. These include:

• Enclave Layout and Signing
• Run-time Environment
• Communication and Control Paths

SGX2 Extensions will allow us to build off of these concepts to
produce a richer programming model.

 Enclave Layout and Signing
An SGX Enclave executes within the memory space of an
application in a special area of physical memory known as Enclave
Page Cache (EPC). The Intel® Software Guard Extensions SDK
(Intel® SGX SDK) uses a paradigm of an enclave as a dynamically
loaded module, such as a Dynamic Link Library (.dll) in the
Windows* OS or a Shared Object (.so) in the Linux* OS. The
developer can program an Enclave Library using common
programming toolchains for Windows* OS and Linux* OS that have
been enhanced with Intel SGX SDK tools and libraries.

Merely running the Enclave Library code within the SGX
environment is not sufficient to protect user data. The enclave must
also host other data segments (also referred to as enclave runtime
components in later sections) related to program execution. These
are shown in Figure 1
• Enclave Heap: if the enclave needs to dynamically allocate

memory buffers, then these buffers should be allocated on a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
HASP '16, June 18 2016, ,
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4769-3/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2948618.2954330

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2948618.2954330

2

heap within the enclave.
• Thread Context: Each thread that enters the enclave

environment needs several constructs to operate within the
enclave. These constructs are collectively referred to as a
Thread Context. The enclave may contain more than one
Thread Context.

The Thread Context consists of several components. These are:
• Thread Control Structure (TCS): the TCS is an SGX defined

data structure which contains metadata used by the HW to
transition into and out of the enclave.

• Thread Local Storage: Thread Local Storage is a set of SW
defined objects used by the thread and accessible to the code.
This includes a Thread Environment Block used by compilers
and run-time libraries, thread local variables, and the SGX State
Save Area (SSA). The SSA is used to store register context
when the thread asynchronously exits the enclave due to an
event such as an exception or an interrupt.

• Thread Stack: Enclave threads should protect stack variables by
using a stack located within the enclave.

One drawback related to the layout of the enclave in SGX1

relates to these additional data segments. The number of these
sections and their size must be statically assigned by the developer.
SGX1 does not allow pages to be added to the enclave after it has
been initialized and prepared to execute. Thus, the developer must
define a static heap size, static number of thread contexts each with
a static heap size for the enclave.

In SGX1, all pages comprising the enclave image must be
loaded before the enclave can execute. This is required because all
pages in the enclave image are measured to ensure the integrity of
the enclave. The measurement of the enclave in the SGX
environment and certain other attributes define the identity of the
enclave. Entities communicating with the enclave will want
attestation to this identity before sharing a secret with the enclave.

The Intel SGX SDK provides the SGX Signing Tool (hereto
referred to as Signing Tool) which provides two basic functions:
• It adds metadata information to a special section in the enclave

binary file. The metadata section contains enclave information
and defines the extra segments including heap size, stack size,
and number of threads in the enclave layout.

• It constructs an image of the enclave and measures its contents,

1 SIGSTRUCT is an SGX defined structure described in [1].

then uses the measurement and other information to construct
an SGX SIGSTRUCT 1. The SIGSTRUCT is then digitally
signed and added to the metadata information in the enclave
binary file.

 Run-Time Environment
Figure 2 below shows the three primary components responsible for
managing SGX enclaves. The components execute in three different
environments – the Kernel Module (Driver) executes in Ring 0, the
Untrusted Run-Time System (uRTS) runs in untrusted Ring 3
Application space, and the Trusted Run-Time System (tRTS) runs
inside the enclave.

These elements work together to perform two primary
functions:
1. Enclave Management: this involves enclave loading, unloading,

and page-swapping.
2. Call Management: manages calls into and out of the enclave

including calls to handle enclave exceptions.

Figure 2: Intel® SGX Run-Time Environment

Enclave Management
To load an enclave, the Untrusted Run-Time System (uRTS) parses
the enclave library file and creates an image of the enclave. The
image includes both the loadable program segments from the enclave
executable file (.dll or .so), the heap, and one or more thread contexts
constructed from the metadata. The uRTS then sends a series of
input/output control (IOCTL) messages containing enclave
information and the enclave image to the Kernel Module (SGX
Driver). The SGX driver uses SGX Ring0 instructions to create an
enclave, add each page to EPC, measure pages as they are added to
EPC, and finally to initialize the enclave for execution.

The loading of the enclave is completed by calling into the
Trusted Run-Time System (tRTS) within the enclave. The tRTS is a
static library built into the enclave image. Functions that a normal
program loader can perform on the program module during loading,
such as relocating address references, must be performed by the
enclave on itself (if address relocations were performed on the
enclave image before it was loaded into EPC, then the measurement

OS

Enclave

App Stack

App Code

Thread Context

…

Enclave Heap

Thread Stack

Enclave Code

ThreadControl Structure

Thread Local Storage

Figure 1: Detailed Enclave Layout

Ring 0

Ring 3

Kernel Module
(Driver)

SGX

EENTER,
ERESUME

Ap
pl

ic
at

io
n

 E
nc

la
ve

Trusted
Run-Time
System EEXIT

Untrusted
Run-Time System

Ring 0
Instructions

3

of the enclave would become dependent on the enclave load address.
The measurement is crucial to establishing the identity of the
enclave). The tRTS performs these functions and prepares the
enclave to execute.

Unloading of the enclave is done through an uRTS function
which calls the driver remove all enclave pages.

The driver uses SGX instructions to swap pages from the EPC
to a backing store in regular memory. It then reloads pages back to
EPC when a page faults (#PF) are generated from an access to
swapped out pages.

Call Management
A call into the enclave, referred to as an ECall, is made through the
uRTS. The uRTS selects a thread context to employ, configures a
structured exception handler (Windows* OS) or signal handler
(Linux* OS), and then issues an ENCLU[EENTER] instruction.
This passes the processing into a tRTS function within the enclave.
The tRTS function prepares the thread to execute securely within the
enclave before execution is passed to a specific user defined function.
The function return path exits the enclave via the ENCLU[EEXIT]
instruction and passes back through the uRTS.

Exceptions that occur within the enclave which are not handled
by the kernel, will be caught by the uRTS handler. The uRTS will
pass exceptions into the enclave where they may be handled by the
tRTS or be passed to user defined handlers within the enclave.

Calls out of the enclave (referred to as OCalls) originate in the
tRTS and are received by the uRTS and then routed to the correct
routine in the application. An OCall is essentially the reverse of an
ECall.

3 Communication and Control Paths

Figure 3: Communication and Control Paths

The protected environment of Intel SGX adds complexity to the
management of enclave memory. The Kernel may not directly
manage or modify data within the enclave. Likewise, the enclave
may not directly call OS functions. To explain how the three
components of the SGX Run-Time Environment, as shown in Figure
3, may work together to manage enclave memory, we must first
explain the unique control and communication paths between them.

As previously explained, the uRTS and tRTS may communicate
via ECalls and OCalls.

The uRTS and Driver communicate via:

• Input/Output Control (IOCTL) Messages from the uRTS to the
Driver.

• Linux Signals: the SGX Driver may generate a signal which can
be caught by a signal handler in the uRTS. The uRTS can then
make an ECall into the enclave to effectively handle the signal.
The Windows* OS does not provide a documented interface for
a driver to inject an exception into an application to be
subsequently caught by a structured exception handler.
The tRTS and the SGX Driver have an indirect method of

communicating. In the Linux* OS, the enclave may generate a HW
Exception such as a #PF which will be routed to the SGX Driver.
The driver may use the fault type and fault information, such as the
faulting address in the case of a #PF, to handle the exception. If the
exception is handled, the driver can return processing to the enclave
by continuing execution at the faulting instruction. When this is
done, the execution flow actually jumps into the uRTS which then
issues an ENCLU[ERESUME] instruction to resume processing at
the faulting instruction within the enclave.

If the driver cannot complete the processing of the HW
Exception, it may generate a Signal to the application, which will be
caught by the uRTS and handled. It may also be subsequently passed
to the tRTS for handling via an ECall. The tRTS can use information
stored in the State Save Area (SSA) to either process the exception
itself or to call a custom handler in the enclave (for information on
installing a custom handler, see [5].)

The design of processes to dynamically manage enclave
memory must consider the strengths and limitations of the
aforementioned communication and control paths.

4 SGX2 Dynamic Memory Management
SGX2 introduces several instructions for the management of enclave
memory. The full set of instructions and basic flows for their use are
described in [1] and [2]. A subset of the instructions are needed for
dynamic heap management, stack expansion, and thread context
creation. These instructions are detailed in Table 1: SGX2
Instruction for Dynamic Memory Mgmt..

Leaf function Description
ENCLS[EAUG] Add a read/write accessible regular

page to an initialized enclave. The
page is added in a ‘pending’ state and
may not be used until the enclave
issues EACCEPT on the page.

ENCLS[EMODT] Modifies the type of an existing EPC
page

ENCLU[EACCEPT] Accepts a page or page type
modifications into the running
enclave

ENCLU[EMODPE] Extends access permissions of an
existing EPC page

ENCLS[EMODPR] Restricts access permissions of an
existing EPC page

ENCLU[EACCEPT
COPY]

Copies existing EPC page content into
a PENDING page and accepts the
page into the running enclave

Table 1: SGX2 Instruction for Dynamic Memory Mgmt.

A simple programming model to explicitly add a new page into an
enclave is detailed in [1]. It is summarized here (note: SGX driver
and Untrusted Run-Time are substituted for the OS):
1. The enclave needs a page of memory. It must keep a record of

its virtual address space and then record that the page has been

ENCLAVE

APPLICATION

uRTS

KERNEL

SGX Driver

tRTS
ECall

OCall

HW Exception: #PF

HW Exception Completion
(via uRTS:ERESUME)

IOCTLs

Linux: Signal

4

reserved. Then it must make an OCall to the uRTS with the
page address. The uRTS will, in turn, send a command to the
driver.

2. The SGX Driver should:
a. Ensure that the address range of the page is available for

use. This can be accomplished by the driver keeping
information on enclave memory allocation or by the driver
working through OS memory management APIs.

b. Select a free page within EPC (If needed, evict a page from
EPC).

c. Create a PTE and map it to the page within EPC
d. Issue an EAUG instruction with the address of the page
e. The page is now added to the enclave, but is in a

PENDING state. A regular access to a page in this state
will generate a #PF. The page must be accepted by the
enclave before it can be used.

3. After the driver completes, it will complete the command and
return to the uRTS, the uRTS will then complete the OCall to
return processing back to the enclave. The enclave must then:
a. Note in its internal virtual memory space record that the

page has been committed to the enclave. This information
should be used to ensure that a page cannot be added
multiple times to the enclave.

b. Issue an ENCLU[EACCEPT] instruction for the page to
remove it from the PENDING state and allow it to be used
within the enclave..

5 SGX2 Programming Model for Dynamic
Memory Allocation

This section describes flows that can be used by SGX enclaves to
expand or create various runtime components (e.g. expand heaps,
expand stacks, or create thread contexts).

 Enclave Memory Layout for SGX2
Section 3 has summarized the flow of committing new EPC pages to
an existing enclave. In general, virtual address space needs to be
reserved first before any EPC pages can be added.

Unlike a regular application where the virtual address space is
managed solely by the OS kernel, an enclave’s virtual address range
is part of its measurement and must be allocated at enclave load time.

Figure 4 shows an example memory layout of an SGX2 enclave.
When compared to Figure 1 the additions are the gray areas which
represent reserved virtual address ranges for expandable
components. For example, the enclave heap is comprised of the green
bottom half and the gray top half. The bottom half is the current heap
(with pages committed) while the top half marks an area for heap
expansion. A similar method applies to stacks, except that they are
expanding downwards (because ESP/RSP moves towards lower
addresses on “push” operations). There is also reserved virtual
address space, depicted in the gray boxes towards the top of the
enclave virtual range, to allow more thread contexts to be committed
at runtime.

Figure 4: Enclave Layout with EDMM Support

 #PF Based Page Allocation
From Section 4, we see that page allocation can is essentially a 3-
step process:
1. The enclave requests additional EPC pages to be mapped at

specified addresses.
2. The uRTS (with help from the SGX driver) commits (i.e.

allocates, maps and invokes ENCLS[EAUG] on) EPC pages at
the requested addresses.

3. The enclave accepts the newly committed pages by invoking
ENCLU[EACCEPT].
As described in section 4 the aforementioned steps can be

encapsulated into an OCall for the enclave to invoke when needed.
However, OCalls have a high overhead. It is costly to perform a call
out to the uRTS (via ENCLU[EEXIT]), send an IOCTL to the driver,
and then return back to the enclave. Moreover, it is difficult to
expand an already-overflowed stack using an OCall as the OCall
requires stack space to execute.

A better approach is to use a page fault (#PF) to trigger the page
allocation process. This is similar to how today’s operating systems
expand heaps and stacks for regular applications. That is:
1. The enclave accesses a yet-to-be-committed page as if that page

existed.
2. A #PF results, and causes the SGX driver to commit a new page

at the faulting address.
3. The enclave is resumed (by ENCLU[ERESUME]) and the

faulting instruction is retried, as if no #PF had ever occurred.
The above process may seem complete, but newly committed

pages in SGX2 must be accepted by the enclave before they may be
accessed. The faulting instruction that is retried in step #3 will fault
again. However, there is one exception. If the faulting instruction is
an ENCLU[EACCEPT], then it will complete the process. In fact,

OS

Enclave

App Stack

App Code

……

Thread Context

…

Enclave Heap

Thread Stack

Enclave Code

ThreadControl Structure

Thread Local Storage

Thread Context

Thread Context

5

ENCLU[EACCEPT] can be used to drive the page allocation process
as described below.
1. The enclave determines the address at which a new EPC page

needs to be committed, and executes ENCLU[EACCEPT] on
that address.

2. A #PF results, and causes the SGX driver to commit a new EPC
page at the faulting address.

3. The enclave is resumed to retry ENCLU[EACCEPT], which
will succeed this time.
The #PF based approach makes the trusted code efficient and

extremely simple (i.e. as simple as only one instruction –
ENCLU[EACCEPT]).

This method also makes it feasible to grow a stack, except that
the SGX driver must generate an exception to the application after
committing a page. The enclave’s (trusted) exception handler can be
designed to avoid the use of the thread’s stack, unlike an OCall
approach.

One drawback in the aforementioned process is that only one
page is allocated for each #PF. This can be a performance drag
should the enclave try to allocate a range of pages. The concept of a
“Dynamic Region”, described next, is targeted to improve the
efficiency by reducing the number of #PFs necessary for batch
allocations.

 Dynamic Region
Given the overhead of processing an exception and subsequently
returning to the enclave via ENCLU[ERESUME], it would be
desirable to have the enclave be able to request a range of continuous
pages and then have the driver commit the entire range of pages at
one time.

The SGX driver generally needs to know the following in
addition to the fault address, for both correctness and efficiency.
• Whether or not the fault address is within an expandable enclave

component (e.g. heap, stack, etc.). – A #PF may result from
many reasons, and the driver needs to tell whether a #PF is a
page allocation request or not.

• The usage of that expandable component, such as heap, stack,
executable code, etc. – By exploiting the usage, the SGX driver
may be able to “predict” which other pages will be requested in
the near future, therefore avoid additional #PFs.
The Dynamic Region is a data structure which provides the

SGX driver supplemental information regarding #PFs. The SGX
driver maintains an array of dynamic region structures per enclave.
Each dynamic region structure contains the following information.
• Range of the region – Defines the address range of the region.

#PFs that fall within the range should be handled in accordance
with the information defined in the dynamic region structure.

• Growing direction – This is a one-bit flag, either up or down.
o A growing-up region is a range in which the enclave is

expected not to request a page at an address unless pages
between the lower bound and that address have all been
allocated. A heap is usually a growing-up region.

o In contrast, a growing-down region is a range in which the
enclave is expected not to request a page at an address
unless pages between that address and the upper bound
have all been allocated. Stacks on x86/x64 architectures
are growing-down regions, for example.

• Allocation Alignment – This is a mask to specify the alignment
for chunk allocations. The driver will add pages from the #PF
address in the grow direction until the page address aligns with
the Allocation Alignment (e.g. the AND of the page address and
the Allocation Alignment mask is zero.) A mask of -1 (i.e. all

1’s) means no alignment, hence chunks are considered to
start/end at lower/upper bound of a growing-up/down region.
In contrast, a mask of 0 (i.e. all 0’s) means no chunks, hence the
region is “discrete” regardless growing direction and only a
single page is committed per #PF.

The SGX driver uses the following algorithm to determine the
appropriate action to take for each #PF:
1. Locate the dynamic region that contains the fault address. If no

dynamic region is found, the current #PF is not a page
allocation request and the process should complete by
generating an exception to the application; otherwise

2. Commit the page containing the #PF.
3. For a growing-up region, keep committing pages towards lower

addresses until:
a. An existing page is reached; or
b. The lower bound of the region is reached; or
c. The logical AND of the current address and the region’s

alignment mask yields 0 (zero).
4. For a growing-down region, keep committing pages towards

higher address until:
a. An existing page is reached; or
b. The upper bound of the region is reached; or
c. The logical AND of the next address and the region’s

alignment mask yields 0 (zero).

 Implicit EPC Allocation
So far we have discussed EPC allocations initiated explicitly by an
enclave, such as when a heap manager expands a heap when it cannot
satisfy a malloc() request. In contrast, implicit EPC allocations are
initiated without an enclave’s awareness. An implicit EPC allocation
must be used when a thread exceeds its committed stack and the stack
must expand beyond the lower bound of the committed area. The
major challenge in implicit allocations is when and how to accept
newly committed pages given the faulting instruction is not
ENCLU[EACCEPT]. The solution lies in enclave exception
handling.

Section 3 describes how HW exceptions such as #PF may be
ultimately passed to the enclave for processing. Again from high
level, the process of an implicit EPC allocation could be described as
below.
1. The enclave tries to access a non-existing page “accidentally”,

and triggers a #PF.
2. The SGX driver intercepts the #PF, and commits a page (or

pages depending on the dynamic region’s Grow Direction and
Allocation Alignment).

3. The SGX driver notices at this point that the allocation is
implicit (more details follow), and injects an exception (This is
OS dependent. A SIGBUS is used in Linux) to the faulting
applications.

4. The application or more precisely, the uRTS, handles the
exception (or signal on Linux* OS) by making an ECall to the
enclave. This ECall is made using the same enclave Thread
Context (identified by a TCS) that faulted.

5. The enclave’s exception handler supplied by the tRTS (The
tRTS gets the first chance at an exception within the enclave)
handles the exception by accepting the newly committed pages,
and then exits back to the application’s exception/signal
handler.

6. The enclave is resumed (by ENCLU[ERESUME] instruction),
and tries the faulting instruction, which will succeed this time.

One may wonder how the SGX driver is able to tell implicit
allocations from explicit ones in step #3 above. This is described in

6

detailed in the following subsection.

Distinguishing Explicit and Implicit Allocations
The trick to distinguish the explicit from implicit allocations lies in
the logical assumption that software, if coded correctly, never reads
uninitialized memory buffers. In practice, a page being requested
must not exist at the time of the request, hence it could not contain
any initialized memory buffers, and thus its first access (as an
implicit allocation request) by software must be a Write access;
otherwise, the access would be due to a software bug. In contrast, an
explicit allocation is triggered by ENCLU[EACCEPT], which results
in a Read access per [1].

Below summarizes how implicit allocations are identified by
the SGX driver upon receiving a #PFs within a dynamic region:
• If the access attempted was a Read Access (per error code

associated with the #PF, see [1]), then it is considered an explicit
allocation – No exception/signal will be injected.

• Otherwise, it is considered an implicit allocation – An
exception/signal will be injected to the faulting application.

One thing worth mentioning, is that it’s possible for a buggy enclave
to read a non-existent page within a heap or stack. This access will
then be misidentified as an explicit EPC allocation by the SGX
driver. The driver may be induced to commit pages (via
ENCLS[EAUG]) into the enclave; however, the pages will not be
accessible because they will not have been accepted by the enclave.
When the faulting instruction is retried, it will #PF again. Given that
the page has already been committed this time, the fault will be
considered as an access violation within the enclave.

Enclave Exception Handling
The enclave must be able to invoke ENCLU[EACCEPT] in its
exception handler to accept newly committed pages before the pages
can be successfully accessed..

The SGX architecture has limitations around nested exception
handling. Specifically, SGX uses SSA (State Save Area) frames to
save processor context on asynchronous exits (i.e. enclave exits due
to interrupts or exceptions), and the number of SSA frames
associated with a particular Thread Context is fixed. Each call into
the enclave via EENTER must reserve on SSA frame to handle a
subsequent interrupt or exception. Thus, nested exceptions can be
handled only to the depth specified by the number of SSA frames.
The latest version of Intel SGX SDK supporting SGX1 allocates 2
(two) SSA frames per Thread Context, meaning nested exceptions
cannot be supported. That said, no implicit EPC allocations could be
supported in the enclave exception handler because there would not
be an SSA frame available for entering the enclave again to accept a
page requested during the processing of an initial enclave exception.
Therefore, caution must be taken not to trigger any implicit
allocations in the context of the enclave exception handling. In
practice, the tRTS exception handler can make sure the available
stack space exceeds a certain (probably configurable) threshold by
expanding the stack if needed before dispatching custom exception
handling routines. Alternatively, the implementation may add one
more SSA dedicated to handling implicit memory allocations within
the exception handling context.

6 Implementation of SGX2 Dynamic Memory
Management

This section describes three most desired enclave dynamic memory
management features implemented by Intel SGX SDK.

 Enclave Signing and Loading
Before going into details of the dynamic memory management
features, let’s go over how runtime components (e.g. heap, stacks,
etc.) are created/reserved and loaded/initialized in an enclave.

The SGX architecture requires enclaves to be digitally signed,
and their signatures will be verified at enclave load time (i.e. by
ENCLS[EINIT] instruction). Figure 1 and Figure 4 show examples
of enclave layouts, for SGX and SGX2 respectively.

Enclave Signing
As stated in Section 2.1, the Signing Tool provided with the Intel
SGX SDK can be used to generate digital signatures for enclaves.
To sign an enclave, the signing tool must construct an image of the
enclave and measure the image. As shown in Figure 4, the image is
composed of both the executable (or loadable) components from the
enclave .dll or .so file and the runtime components (e.g. heap, stack,
TCS, etc.). The format of these components and their characteristics
such as their range (for heap and stack components) must be
calculated by the signing tool. The Signing Tool accepts an XML
file, the “enclave configuration” file, for developers to specify
parameters (e.g. size, count) of certain components. Loosely
speaking, the signing tool uses the configuration along with the
enclave executable image to calculate the locations, attributes (and
sometimes contents) of all of the enclave pages, then stores the
resultant information(referred to as enclave “metadata”) into a
dedicated section (i.e. “.sgxmeta”) embedded inside the executable
file, measures the page contents/attributes of the resulted enclave in
the same way as if it were done by the hardware, and finally signs
(using a user-supplied private key) and stores the measurement along
with the enclave metadata.

For SGX2, this schema of the enclave configuration has been
extended to accommodate parameters relating to reserved address
space for expandable/creatable components. Newly added
parameters include, but are not limited to
• Min/Max heap sizes
• Min/Max stack sizes
• Min/Max number of threads
More information regarding enclave configurations is available in
[5].

Enclave Loading
Enclave loading is driven by the uRTS, which loads the enclave
executable file and extracts the location/size information for each of
the enclave runtime components (and sometimes patches the
executable image), and invokes (via IOCTL interface) the SGX
driver for the actual loading of pages into EPC.

As mentioned in Section 5, the additions (compared to SGX1)
to the loading process is the dynamic regions that need to be
conveyed to the SGX driver. Given that the uRTS loader understands
the locations and usages of the runtime components, the dynamic
regions are trivial to establish. The SGX driver provides an IOCTL
interface to accept dynamic regions from the uRTS. Please note that
dynamic regions are tied to the enclave layout so usually don’t
change across the lifespan of the enclave.

7

 Dynamic Heap Allocation

Figure 5: Range Allocation by a Single #PF

The tRTS implementation of malloc()/free() was based on Doug
Lea’s Malloc or dlmalloc for short (see [6]). dlmalloc inherently uses
sbrk() to allocate and free pages. sbrk() is expected to take a size
delta (positive number for allocation and negative number for
deallocation) as input and return the new end address of the heap.
The tRTS version of sbrk() simply tracks the boundary of the
allocated portion of the heap, and pushes the boundary higher/lower
on allocation/deallocation respectively. With SGX2, sbrk() is
changed slightly to also maintain the boundary between the
committed and uncommitted portions of the heap and to execute
ENCLU[EACCEPT] for new pages whenever the allocated
boundary moves beyond the committed boundary. The following
summarizes the behavior of sbrk() in a tRTS implementation with
SGX2 support, assuming the virtual range of the heap has been
declared as growing-up dynamic region with its alignment mask set
to -1.
• Two global variables – heap_allocated and

heap_committed.
o heap_allocated tracks the end address of the heap. It

is initialized to the lower bound of the heap range.
o heap_committed tracks the end of the committed region

of the heap. It is also initialized to the lower bound of the
heap range.

• sbrk() invoked with a positive delta is an allocation request.
heap_allocated is adjusted up by the specified delta. If it
passes beyond heap_committed:
1. Set heap_committed to heap_allocated; and
2. Accept all pages between the old and new values of

heap_committed. Please note that the page at the highest
address should be accepted first to reduce the number of
#PFs (due to the fact that the region is a grow-up region

and the SGX driver will commit pages up to the #PF
address).

• sbrk() is invoked by a negative delta – This is a deallocation
request. heap_allocated is adjusted down by the specified
amount. The excess of the committed heap (i.e. pages between
heap_allocated and heap_committed) could be freed at
this point. In a future paper we hope to discuss efficient
algorithms for trimming heaps.
Figure 5 depicts the sequence taken by sbrk(), as the enclave is

trying to expand its heap from M to N (where N >M) pages. Please note
that the subscripts denote the distance of the target page from the
beginning of the heap, divided by page size. That is, the enclave starts
with an M-page heap and is trying to expand it to N pages in size by
requesting pages M through N-1. For optimal performance, the
enclave does ENCLU[EACCEPT]N-1 first. As described in Section 5.2,
this results in a #PF which causes the SGX driver to commit pages
up to the N-1 Page. It doesn’t matter in what order the rest of the
pages are committed or accepted.

 Stack Expansion
Expanding a stack is trickier than expanding a heap in the sense that
the enclave has to know when the stack needs expansion. There are
two approaches in practice:
1. Handling #PFs resulting from a stack overflow.
2. Probing the stack using ENCLU[EACCEPT]
The first approach can be considered a default approach and must be
implemented to ensure that the run-time is prepared to grow the stack
at arbitrary points in the enclave when a variable is “pushed” onto
the stack. The second method takes advantage of a compiler feature
which probes the stack whenever function is called with local
variables in excess of a specific size (usually one page). In this case,
the compiler will insert a function that probes the stack to ensure that
memory is committed for the stack. For example, the Microsoft*
Visual C Compiler calls the __chkstk() helper routine to probe the
stack. The run-time can make the stack expansion process more
efficient by inserting an ENCLU[EACCEPT] in the trusted stack
probe.

The following summarizes how stack is expanded in a tRTS
implementation with SGX2 support, assuming the virtual range of
the stack has been declared as a growing-down dynamic region with
its alignment mask set to -1.
• One thread local variable – stack_committed is maintained

per thread. Please note that it is accessed by its own thread to
avoid race conditions. It is initialized to the minimal stack size
specified in the enclave configuration XML file.

• Probing the stack – The stack probing routine (e.g. __chkstk())
compares ESP/RSP with stack_committed and accepts
(using ENCLU[EACCEPT]) all pages between them if
ESP/RSP passes below stack_committed, and then updates
stack_committed to ESP/RSP.

• Enclave exception handler – As discussed in Section 5.4, the
exception handler subtracts a certain amount from ESP/RSP as
the reserved stack for exception handling, and compares
ESP/RSP with stack_committed, and accepts all pages
between them if ESP/RSP is below stack_committed, and
then updates stack_committed to ESP/RSP.

 Thread Creation
Creating a new thread context involves creating all of its
components, initiating its TCS page and converting it to the page
type of PT_TCS.

What comprise of a thread context are summarized below, in

8

the order of their addresses from high to low.
• SSA – State Save Area for asynchronous exits. There are

typically two SSA frames, one page each per current SGX
architecture.

• TLS – Thread Local Storage, which includes both compiler
specific per-thread control information and ISV defined TLS
variable.

• TCS – Thread Control Structure containing per-thread control
information needed by the processor to start an enclave thread.
More information available in [1]

• Stack.
Figure 6: Thread Context Components and Initialization depicts

the composition of a thread context. Given all of the components are
consecutive in virtual memory and they are all needed before the
TCS could be entered, they could be considered as a whole a single
stack, whose bottom (highest address) would then be the SSA1 page.

Figure 6: Thread Context Components and Initialization

Therefore, the creation process could be described below:
1. The whole thread context should be declared to the SGX driver

as a growing down region at enclave load time.
2. The enclave accepts “Stack Page N” (see Figure 6). This causes

the driver to commit all pages between “Stack Page N” and the
upper bound of this thread context.

3. The enclave accepts the rest of the pages (i.e. the TCS, TLS and
SSA pages) in any order deemed convenient by the
implementation.

4. The enclave initializes the content of the TCS page.
5. The enclave makes an OCall requesting the SGX driver to

convert the TCS page to the type of PT_TCS.
a. The uRTS passes the address of the TCS page and the

requested page type to the SGX driver via IOCTL.
b. The SGX driver converts the page type by

ENCLS[EMODT] and issues ENCLS[ETRACK],
followed by broadcasting an IPI to flush out stale TLB
entries for all logical processors.

6. The enclave accepts the page type change using
ENCLU[EACCEPT]. The new thread context is ready for use
hereon.

One more thing worth pointing out is that, unlike expanding heaps or
stacks, it’s typically the uRTS that determines when additional thread

contexts are needed (hence created). In practice, the uRTS maintains
a pool of free threads to be assigned to ECall requests, and initiates
new thread creation only when the pool has “dried up”.

7 Future Considerations
We have seen how three new SGX2 instructions listed in Table 1 can
be used for heap expansion, stack expansion, and adding thread
contexts to a running enclave. This is just a small subset of the
programming features that can be enabled with SGX2. Additional
features that may be explored include, but are not limited to:
• Heap Contraction with the implementation of page trimming

made possible by the addition of the ENCLS[EMODT] and
ENCLU[EACCEPT] instructions.

• Modification of Page Access Permissions using the
ENCLS[EMODPR], ENCLU[EMODPE] and
ENCLU[EACCEPT] instructions

• The dynamic loading of code either by dynamically loading and
linking to libraries or by employing Just-in-Time compilers
within the enclave. Code loading is made possible with the
addition of the ENCLS[EAUG] and
ENCLU[EACCEPTCOPY] instructions.

In the future, we hope to detail run-time support for these additional
features.

8 Summary
SGX2 Instructions increase the flexibility of the SGX programming
environment by allowing the programmer to dynamically manage
memory within the enclave space. We have shown examples of a
few run-time enabled features such as heap expansion, stack
expansion, and the creation of thread contexts. These features allow
enclave developers to design their enclaves to more efficiently adapt
to varying programming workloads.

9 ACKNOWLEDGEMENTS
The authors of this paper wish to acknowledge the contributions of
many hardware and software architects and designers who have
worked in developing this innovative technology.

Intel is a trademark of Intel Corporation in the U.S. and/or other
countries.

10 REFERENCES

[1] Intel Corp., "Intel® 64 and IA-32 Architectures Software

Developer’s Manual," April 2016. [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/docum
ents/manuals/64-ia-32-architectures-software-developers-
manual.pdf. [Accessed 7 May 2016].

[2] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd and C. Rozas, "SGX Instructions to Support
Dynamic Memory Allocation Inside an Enclave," in HASP,
Seoul, South Korea, 2016.

[3] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, V. Phegade and
J. Del Cuvillo, "Using Innovative Instructions to Create
Trustworthy Software Solutions," in ISCA-HASP, Tel-Aviv,
2013.

[4] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H.
Shafi, V. Shanbhogue and U. Savagaoankar, "Innovative
Instructions and Software Model for Isolated Execution," in
ISCA-HASP, Tel-Aviv, 2013.

[5] Intel Corporation, "Intel(R) Software Guard Extensions
Evaluation SDK for Windows* OS User's Guide," 2016.

… …

Thread Control Structure (TCS)
Thread Local Storage (TLS)

State Save Area 1 (SSA1)

Stack Page N

State Save Area 0 (SSA0)

Stack Page N-1

Stack Page 1
Stack Page 0

Gap

Gap

Committed at
thread creation

Committed on
demand

9

[Online]. Available:
https://software.intel.com/sites/default/files/managed/d5/e7/I
ntel-SGX-SDK-Users-Guide-for-Windows-OS.pdf.

[6] D. Lea, "A Memory Allocator," 4 April 2000. [Online].
Available: http://gee.cs.oswego.edu/dl/html/malloc.html.

No license (express or implied, by estoppel or otherwise) to any
intellectual property rights is granted by this document.
Intel disclaims all express and implied warranties, including without
limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty
arising from course of performance, course of dealing, or usage in
trade.
This document contains information on products, services and/or
processes in development. All information provided here is subject
to change without notice. Contact your Intel representative to obtain
the latest forecast, schedule, specifications and roadmaps.
The products and services described may contain defects or errors
known as errata which may cause deviations from published
specifications. Current characterized errata are available on request.
Intel technologies features and benefits depend on system
configuration and may require enabled hardware, software or service
activation. Learn more at Intel.com, or from the OEM or retailer.
Copies of documents which have an order number and are referenced
in this document may be obtained by calling 1-800-548-4725 or by
visiting www.intel.com/design/literature.htm.
Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel
Corporation in the U.S. and/or other countries.
Optimization Notice
Intel's compilers may or may not optimize to the same degree for
non-Intel microprocessors for optimizations that are not unique to
Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations
not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804
* Other names and brands may be claimed as the property of others.
© 2016 Intel Corporation.

http://www.intel.com/design/literature.htm

