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Why Hardware Security is Important?
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Side-Channel Attacks
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Possible side-channel attacks
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Power Analysis Attacks
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Simple Power Analysis: Directly analyze (few)

Simple Power Analysis (SPA) Attacks
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D. Oswald and R.-U. Bochum, “ID and IP theft with Side-Channel Attacks,” EMSEC, 2014



Conventional First-Order (CFO) Differential
Power Analysis (DPA) Attacks
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Results of CFO DPA Attacks
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Encryption Logic Circuit Modification

Power information leakage
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Power Supply Scrambling
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Power Delivery Network (PDN) Modification
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Random Dynamic Voltage Scaling (RDVS)
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Plaintexts Masking

Plaintext Random Mask
add random mask <
i Input data dependent
Cipher Key Masked Mask
Algorithm Modification 2
Ey = a:CVddfc

'

remove random mask —

Ciphertext

N. Pramstaller, E. Oswald, S. Mangard, F. K. Gurkaynak, and S. Hane, “A Masked AES ASIC Implementation,” in Proc. Austrochip, 2004 15



Presentation Flow

R ——
] Side-channel attacks

[0 Power analysis attacks (PAA)

[0 Previous countermeasures against PAA

[0 Aggressive voltage scaling (AVS) against
conventional first-order (CFO) DPA attacks

[ Bivariate first-order (BFO) DPA attacks on
cryptographic circuit with AVS technique

[0 Proposed countermeasure for securing
cryptographic circuit with AVS technique
against BFO DPA attacks

[ Conclusion ”



Aggressive Voltage Scaling (AVS) Technique
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--------------------------------------------------------------------------------------------------------

Low overhead
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IEEE Transactions on Computers, Jun. 2014.



AVS Technique Against CFO DPA Attacks
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BFO DPA Attacks on a Cryptographic
Circuit with AVS Technique
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Absolute value of correlation coefficient
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Advanced Encryption Standard (AES)
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DPA Attacks on AES Engine
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Proposed Lightweight Masked AES Engine
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Results of BFO DPA Attacks on AES Engines

with AVS Technique
o

Absolute value of correlation coefficient

o
-
(=]

Correct key 66
-

-
-

&

0.05 -

bt
=]
=]

Keys

Successful BFO DPA attacks

on a conventional AES engine with
AVS technique after inputting 6

thousand plaintexts

i |16 L Ll
0 16 32 48 &4 B0 06 112 128 144 160 176 192 208 224 240 256

Absolute value of correlation coefficient

0.010

0.005 -

0.000

Correct key 66
!

-

0 16 32 48 84 80 96 112 128 14-4 100 'I.TG 192 208 224 240 256

Keys

Successful BFO DPA attacks
on a lightweight masked AES
engine (constant masking
sequence) with AVS technique
after inputting 500 thousand
plaintexts

Absolute value of correlation coefficient

0.010

i Cm/’rett key 66

0.005 - 1T 11

Keys

Unsuccessful BFO DPA attacks
on a lightweight masked AES
engine (random masking
sequence) with AVS technique
after inputting 1 million
plaintexts

26



Presentation Flow

R ——
] Side-channel attacks

[0 Power analysis attacks (PAA)

[0 Previous countermeasures against PAA

[0 Aggressive voltage scaling (AVS) against
conventional first-order (CFO) DPA attacks

[ Bivariate first-order (BFO) DPA attacks on
cryptographic circuit with AVS technique

[0 Proposed countermeasure for securing
cryptographic circuit with AVS technique
against BFO DPA attacks

0 Conclusion .



Conclusion

» Cryptographic circuit is vulnerable against power analysis attacks

« Aggressive voltage scaling (AVS) technique is an efficient
countermeasure against conventional first-order (CFO) DPA
attacks with low overhead

« Conventional AES engine employs AVS technique is vulnerable
against bivariate first-order (BFO) DPA attacks

« Lightweight random masked AES engine with AVS technique
thwarts DPA attacks efficiently with negligible power/area/
performance overhead
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