
Shakti-T : A RISC-V Processor with
Light Weight Security Extensions

Arjun Menon, Subadra Murugan, Chester Rebeiro,
 Neel Gala, and Kamakoti Veezhinathan

Department of Computer Science and Engineering

 Indian Institute of Technology Madras, India

Why Security?

1946: ENIAC

2000: Pentium 4

Present

2

Memory-based attacks

• Spatial (Buffer overflow)

• Stack Smashing

• Return oriented programming

• Format string

• Temporal

• Use-after-free

• Double-free

3

Existing Solutions

• Non-executable stack

• Stack Canaries

• Address Space Layout Randomization (ASLR)

• Control Flow Integrity

• Fat pointers

4

Fat Pointers

• Typical structure:

Value Base Bound

• Various implementations

• SoftBounds (S/W) [Nagarakatte et al., PLDI 2009]

• HardBound (H/W) [Devietti et al., ACM SIGARCH 2008]

• Watchdog (H/W) [Nagarakatte et al., ISCA 2012]

• WatchdogLite (S/W) [Nagarakatte et al., CGO 2014]

5

Existing Hardware Solutions

• One of the common design decision is to store the base and bound
values (in shadow registers) in the register file alongside the value

• The decision has the following implications:

• Most of the base and bound shadow registers remain unused

• When register spilling occurs, the base and bounds are also discarded

• If aliased pointers exists in the registers, the base and bound values will have
duplicate entries

6

Proposed solution

1. Have a common memory region called Pointer Limits Memory
(PLM) to store the values of base and bounds

• Declare a new register which points the base address of PLM

• Base and bounds are associated with a pointer by

 the value of the offset (pointer_id)

2. Add a 1-bit tag to every memory word

• 0: Data/Instruction

• 1: Pointer

PLBR

(Data +

Instructions)

PLM

MEMORY

Tag bit

7

pointer_id

Proposed solution (contd…)

3. Maintain a separate table alongside the register file that stores the
values of base and bounds (and the pointer_id)

• One level indexing is used to associate a GPR holding a pointer with its
corresponding values of base and bounds

8

Proposed solution (contd…)

9

New Instructions

• Write tag [wrtag rd, imm]

• Write special register [wrspreg rs1, imm]

• Read special register [rdspreg rd, imm]

• Write PLM [wrplm rs1, r2, rs3]

• Load base and bounds [ldbnb rd, rs1]

• Load pointer [ldptr rd, rs1, imm]

• Function store [fnst rs1, imm(rs2)]

• Function load [fnld rd, imm(rs1)]

10

The pipeline

11

Example programs

• Accessing an array

 1. The value of base and bounds is stored in the PLM

 (using the wrplm instruction) when an array is declared

 2. When an array is accessed and the base address is

 loaded to a GPR, ldbnb instruction is also issued to load

 the base and bounds to the BnBCache

char a[10];

char c= a[4];

12

Example programs

• Dynamic memory allocation

1. After malloc returns with the base address, the bounds is computed as

 bound = base + n

2. Store the value of base and bound in the PLM at the address PLBR+ptr_id

using the wrplm instruction.

3. When storing the initialized value of ptr in the memory at an address addr,
store the value of ptr_id at addr+8

char *ptr = malloc(n);

13

Example programs

• A function call

function foo() {

 char *ptr5;

 ptr5= malloc(20);

 …

 bar();

 …

}

ptr_id= 5

14

Example programs

• A function call

function foo() {

 char *ptr5;

 ptr5= malloc(20);

 …

 bar();

 …

}

15

Example programs

• A function call

function foo() {

 char *ptr5;

 ptr5= malloc(20);

 …

 bar();

 …

}

16

Example programs

• A function call

function bar() {

 char *ptr6;

 ptr6= malloc(40);

 …

 int c= 4+5;

 …

 free(ptr6);

 return;

}

17

Example programs

• A function call

function bar() {

 char *ptr6;

 ptr6= malloc(40);

 …

 int c= 10+3;

 …

 free(ptr6);

 return;

}

18

Example programs

• A function call

function bar() {

 char *ptr6;

 ptr6= malloc(40);

 …

 int c= 10+3;

 …

 free(ptr6);

 return;

}

19

Example programs

• A function call

function bar() {

 char *ptr6;

 ptr6= malloc(40);

 …

 int c= 10+3;

 …

 free(ptr6);

 return;

}

ptr5 R1

20

Example programs

• A function call

function foo() {

 char *ptr5;

 ptr5= malloc(20);

 …

 bar();

 …

}

21

Comparison with existing solutions

 Safety

checking

Instrumentation

methodology

Metadata size for

n aliased pointers

Memory

fragmentation

Performance

overhead (delay)

Intel MPX [1] Spatial Compiler 128 x n No N/A

HardBound [2] Spatial Hardware 128 x n No HW: N/A

SW: 10%

Low-fat Pointer [3] Spatial Hardware 0 Yes HW: 5%

Watchdog [4] Spatial &

Temporal

Compiler +

Hardware

(256 x n) + 64 No HW: N/A

SW: 25%

WatchdogLite [5] Spatial &

Temporal

Compiler (256 x n) + 64 No SW: 29%

Shakti-T Spatial &

Temporal

Hardware (64 x n) + 128 No HW: 1.5%
+

22

Conclusion

• Shakti-T uses the concept of fat pointers to eliminate spatial and
temporal memory attacks.

• It uses a common memory region to store the base and bounds.

• The base and bounds are cached at the register level using a dedicated
register file, and are accessed using a one-level indexing.

• The additional computations are done in parallel with the ALU’s
computation and thus, it does not affect the clock period.

23

Future Work

• Incorporating the necessary changes in the compiler and measuring the
actual increase in program execution time by running the modified
code on the actual hardware.

• Extending the tagged architecture to enforce fine-grained access
control and information flow control.

24

Thank You!

25

References

[1] Intel Corporation, “Intel MPX Explained.” https://intel-mpx.github.io/design/

[2] Devietti, Joe, et al. "Hardbound: architectural support for spatial safety of the C
programming language." ACM SIGARCH Computer Architecture News. Vol. 36. No.
1. ACM, 2008.

[3] Kwon, Albert, et al. "Low-fat pointers: compact encoding and efficient gate-level
implementation of fat pointers for spatial safety and capability-based
security." Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013.

[4] Nagarakatte, Santosh, et al. “Watchdog: Hardware for safe and secure manual
memory management and full memory safety.”, ISCA 2012.

[5] Nagarakatte, Santosh, et al. "Watchdoglite: Hardware-accelerated compiler-
based pointer checking." Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization. ACM, 2014.

26

https://intel-mpx.github.io/design/
https://intel-mpx.github.io/design/
https://intel-mpx.github.io/design/
https://intel-mpx.github.io/design/

