

Host-based DoS Attacks and Defense in the Cloud

Tianwei Zhang and Ruby B. Lee Princeton University

> HASP June 25, 2017

Denial-of-Service in the Cloud

Denial-of-Service attacks

- Compromise the **availability** of system and services.
- Network-based (Distributed) DoS attacks.
- Cloud becomes an important target
 - Top threats in cloud computing^[1].
 - 86% of service providers witnessed DDoS attacks^[2] in 2016.

Host-based DoS attacks

Shared computing resources (memory, I/O devices)

[1] Top Threats Working Group. The Treacherous 12 Cloud Computing Top Threats in 2016. In Cloud Security Alliance, 2016
[2] Arbor Networks, Worldwide Infrastructure Security Report, 2016

Multi-tenancy Vulnerability

Customer

App

Operating System

Malicious

Customer

App

Operating System

Network

Infrastructure-as-a Service

- Customers lease Virtual Machines
- Multi-tenancy
- New Vulnerability

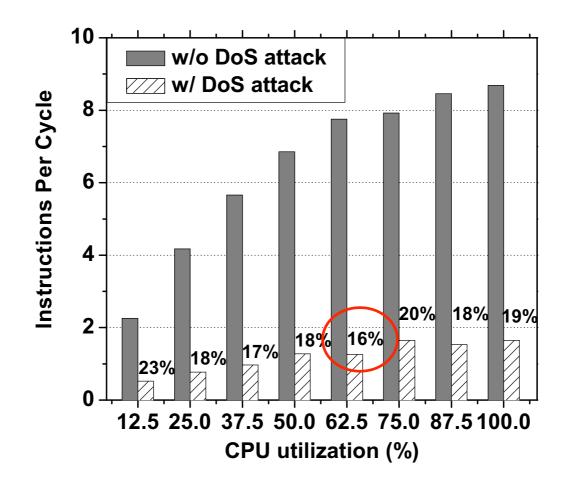
How severe can host-based DoS attacks be? How to mitigate such vulnerability?

□ Host-based DoS attacks.

- Attack techniques.
- Server-wide attacks
- Datacenter-wide attacks
- Defense.
 - Monitoring
 - Identifying attacker VMs

Threat Model and Assumptions

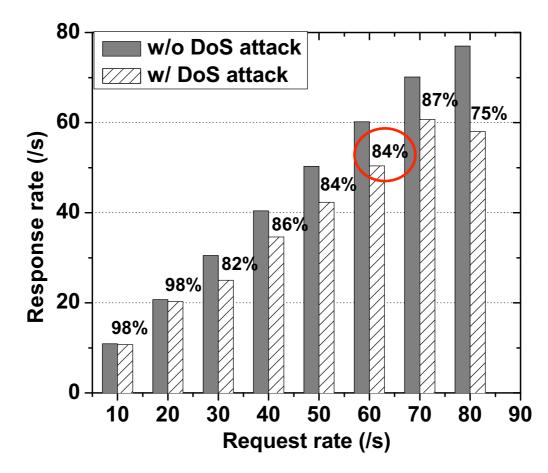
□ Attacker's Goal.


- Compromise the availability of cloud servers and the datacenter
- □ Attacker's capability.
 - Can launch multiple VMs in the target datacenter
 - Has full control of his own VMs, but not the hypervisor or other VMs.

Memory DoS Attack

Memory Contention

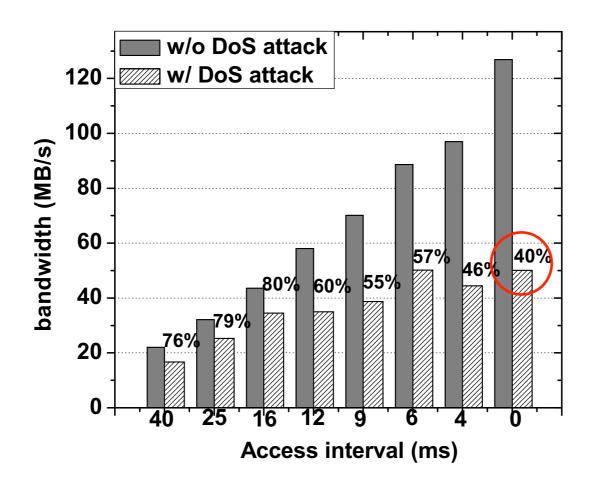
• Exotic locked atomic operation (atomic access to unaligned blocks) can lock the memory bus.



Network DoS attacks

Network DoS attacks.

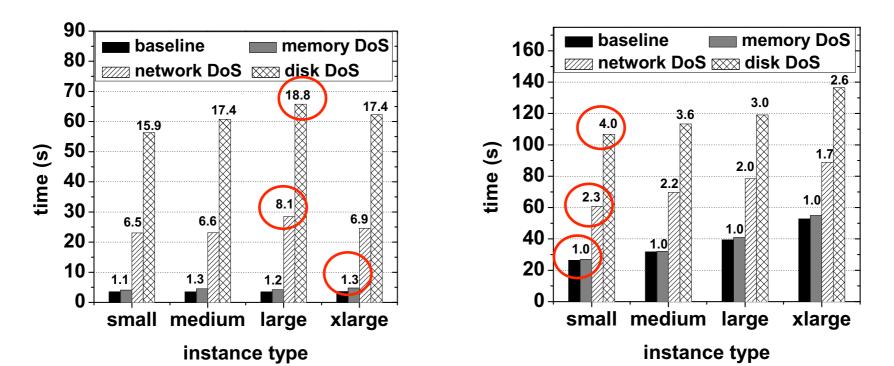
 Flood the VM with network packets to cause congestion in the physical devices and deplete the hypervisor's ability to handle network inputs and outputs for VMs



Disk DoS attacks

□ Disk DoS attacks.

 Flood the VM with disk accesses to cause congestion in disk scheduler and devices



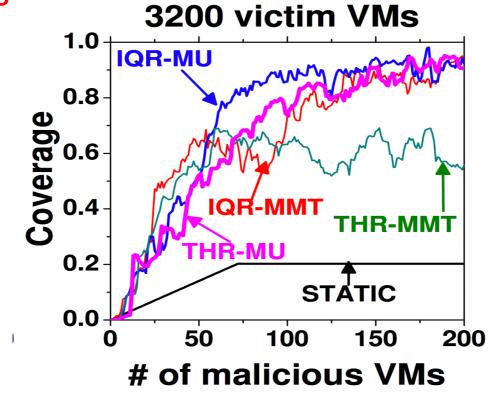
Evaluation: Attacking Cloud Providers

Affecting cloud provider's management services

- OpenStack
- VM launch
 - Memory: 1.3X; Network: 8.1X; Disk: 18.8X
- □ VM migration.
 - Memory: 1.0X; Network: 2.3X; Disk: 4.0X

Attacking the Entire Datacenter

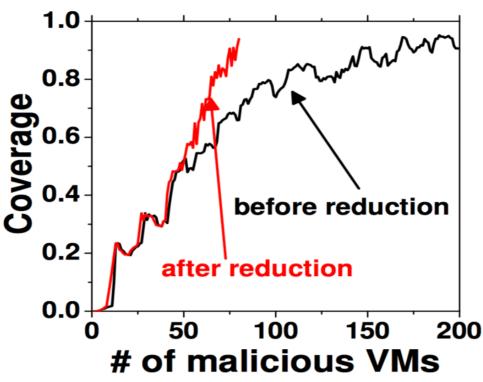
- Attacker launches a large number of VMs to cover as many servers as possible
- Power-aware VM scheduling policies make this easier for attacker
 - VM launch: allocate VMs on the smallest number of servers (STATIC)
 - VM runtime: checks if each server is overloaded:
 - Static threshold (THR)
 - Interquartile Range (IQR)
 - Select some VMs and migrate them to other servers
 - Minimum Migration Time (**MMT**)
 - Minimum Utilization (**MU**)



Evaluating Datacenter-wide Attacks

Use CloudSim to simulate a cloud system

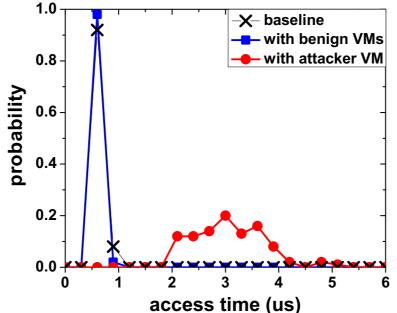
- □ Attacker's coverage
 - # of infected servers / # of active servers
- Power-aware policies are more vulnerable to


attacks

Making Attacks More Efficient

- Reducing co-located VMs
- □ Identify co-located VMs
 - Micro-architectural covert-channel technique
- □ Keep one VM on each server

3200 victim VMs


A General-purpose Defense Solution

□ Challenges.

• Can detect different types of DoS attacks

Key insights

- A program's access characteristics to one computing resource follow a certain probability distribution
- A huge change in a program's resource usage indicates excessive resource contention, i.e., host-based DoS attacks

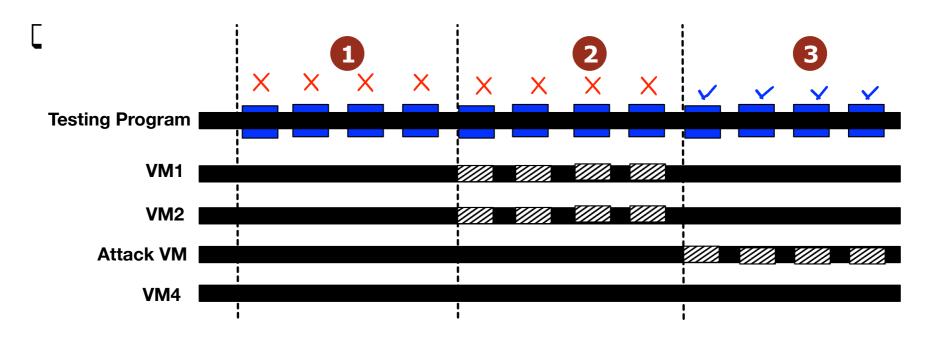
Monitoring

Run a Testing Program for each resource

- Memory:
 - Access a fixed size of memory buffer.
 - Measure access time as a sample
- Network:
 - Establish a TCP connection.
 - Measure connection time as a sample
- Disk:
 - Access a fixed size of disk file.
 - Measure access time as a sample.

□ Kolmogorov-Smirnov (KS) test:

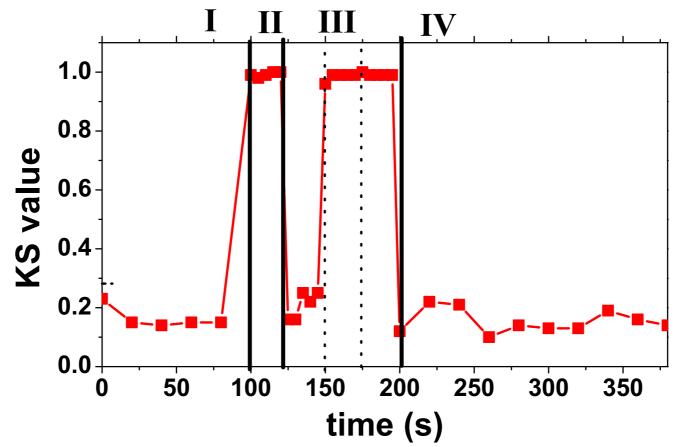
- Offline reference samples: $[X_1^R, X_2^R, ..., X_{n^R}^R]$
- Online monitored samples: $[X_1^M, X_2^M, ..., X_{n^M}^M]$


• **KS-value:**
$$D_{n^{\mathrm{M}}, n^{\mathrm{R}}} = \sup_{x} |F_{n^{\mathrm{M}}}^{\mathrm{M}}(x) - F_{n^{\mathrm{R}}}^{\mathrm{R}}(x)|$$

Identifying Attacker VMs

Resource Throttling

- Select parts of the VMs and throttle down their' execution.
- Perform KS test to check if attacker VMs are within the selected VMs.
- Using binary search to pinpoint the attacker VMs.
- Throttling down or shut down the attacker VMs and notifying their owners.



Evaluation: Detection

□ Four Stages

- . The attacker does nothing
- **II.** The attacker begins attack
- **III.** The cloud provider identifies the attacker VM
- IV. The cloud provider shuts down the attacker VM

Conclusions

- Showing host-based DoS attacks on different resources that can cause availability degradation of entire cloud servers
- An attack strategy to compromise the availability of the entire datacenter
- Showing that power-aware scheduling policies make attacks on the whole data-center worse
- A novel general-purpose solution to defeat different DoS attacks using probability distribution sampling and resource throttling.

Thank You!