SeM: A CPU Architecture Extension
for Secure Remote Computing

Ofir Shwartz, Yitzhak Birk

E Hardware and Architectural
Support for Security and Privac

(HASP) 2017

Department of Electrical Engineering
T h [::E Electronics
| ec nlon ::: Computers

Israel Institute of Technology :
|B® communications

Motivation

» Clouds are promising
= Pay per use
s No overhead costs
= Establish and discard resources on the fly

« Security limits adoption
= Risks at many levels

= Software: other users (competitors), OS, hypervisor,
VMM

s Privileged attacker: exploit bugs, cloud owner
= Hardware: physical attacks

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

—
Threat Model

« Platform software
= Hypervisor, VMM, OS are untrusted
s Any management software is untrusted

» Platform hardware
= Memory, network, board signals are untrusted
= CPU is trusted — not internally snooped or modified

« An attacker has full control of the machine

= Can implant software or hardware before or during
the operation of the program

_~

TECHNION
M lsraelInstitte — Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

Previous Works

- Software based:
= Easy to adopt, no hardware changes are required

o Some software must be trusted; untrusted cloud owner?
- Exceptions: software based, hardware verified

= Software performs security tasks — performance overheads
- Hardware:
= Commonly: only the CPU is trusted.

= Many do not support existing binaries, and performance is
low

= Intel SGX
- Only matches programs developed for it
- Limited performance
= Software on top of SGX:
- E.g., Haven, PANOPLY, Graphene, SCONE, ...
- Support for some applications, still performance issues

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Goals

- Keep confidentiality and integrity of
= Data: input, temporary, output
= Code
= State of execution
« While also:
s Support existing applications (binaries)
s Support conventional systems: multi-tasking,
Interrupts, signals, system calls, etc.
= High performance execution
= Low power / area overheads

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

.,
Explicitly, How to..

 Problem #1: Protect code and data
* Problem #2: Protect state and flow
» Problem #3: Using untrusted code

Problem #4: Thread management
» Problem #5: Multi-node integrity

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

.,
Secure Machine (SeM) Arch. Ext.

Untrusted Area,
encrypted region

| Trusted Area (TA), cleartext region

’ S

: Cache
Swap [Main | M Sl e Exec
Disk Memor anagement Unit
i] | Unit(SMU) [pegs

- | \

Encrypted and > | I |k

signed content : A I NI I I IHNHH NI I HHIHIH I XK H KT KX XK I

Clear content €= | CPU Region I
_ J L L L Ly Ly Ly L LAy LAy LAy Ly L J

_~

TECHNION
M lsraelInstitute— Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

EE————————————
Problem #1: Protect Code and Data

- Common approach: memory encryption

- Code and data: signed and encrypted when in untrusted
memory, clear when in cache

= Counter mode encryption (e.g., GCM)

= Signatures (e.g., GHASH) and a hash tree

- Key Storage: securely store secret keys

= Per process, or group of processes

= Keys: write-only for software to form a Key Entry
- By using public key cryptography

= Upon start, attach with the process ID(s) — details in the
paper

- But what about cached data?

= Main idea: couple instructions and data by a security
domain

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

.,
Memory = Cache

- On cache miss: fetch block from memory 2= p Pt

Cache
Decrypt and validate
If validated correctly, fetch decrypted bIocImT_u th? u

[m]

[m]

Validate

Decrypt T
A Untrusted

read memory

[m]

else, fetch original

To cache: data, Auth (true/false),
owner ID (ID in the Key Storage)

- Cache blocks:
= Each block also has Auth bit and OID
= {Auth,OID} serves as the Security Domain of the block
Cache |Auth |OID
d/m.d. true 23
d/m.d. false 60

[m]

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

R
Cache = Memory

« Upon eviction: If Auth=t, sign and encrypt
= Using the keys in the Key Storage (for owner ID)
= Also update the integrity structure

CPU Data Auth

- Else: evict as is [cache v
Encrypt

Y
Sign
nov *yes

Auth?

| Untrusted
memory write

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

EE————————————
Cache & Exec Unit

« On instruction fetch, also fetch Auth and OID

- Secure Access

= On each cache access (memory instruction - load,
store,..)

If inst{Auth,OID}==data{Auth,OID}
allow access

else
reject

a

a

O

a

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Secure Access
E_

metadata Load R1, True
metadata Oxﬁ%@bD
metadata 0x5678
metadata 0x1122
Cache Miss!
SMU Validate
Untrusted
Memory

~
TECHNION
Israel Institute
of Technology

Ofir Shwartz, Electrical Engineering Department

>

Grant!

30>

Reject

35

OxABCD

Execution
Unit

Secure Machine (SeM), HASP 2017

Secure Access: Benefits

- Safe: foreign code cannot validate correctly
= Even if privileged
= Must be validated to access validated (protected) data
- Automatic boundary between trusted and untrusted
worlds

s Unmodified code cannot expose memory data or
Import unauthorized memory data by mistake

« Performance: adversarial blocks co-reside in the
cache
s No added evictions on top of a regular machine

s The system matches the performance the plain
memory encryption subsystem in use (encrypt and
sign) (~2%)

TECHNION
M lsraelInstitute— Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

Special Memory Instructions

« Must be validated to run:

» StoreNA — store and set Auth=false
= Send data to untrusted code

« LoadNA — load from a block with Auth=false
o Read data from untrusted code

« InitA — store zeros to a memory region, sign
correctly

= |nitialize newly allocated memory

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

EE————————————
Problem #2: Protect State and Flow

- State: register values; Flow: seq. of instructions

- Example: Interrupt issues an untrusted
Instruction unexpectedly
= Register values are exposed (secret context)

= When back, need to enforce correct register
values and correct instruction

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Security Modes (Cache <~ Exec Unit)

- Work in two modes: trusted and untrusted
s Trusted mode: only runs validated (Auth=t) instructions
= Untrusted mode: only runs non-validated instructions
s Switch automatically

« If Trusted and inst{Auth}=false

= Store reg values in SMU Sealed Storage (SSS) and clear
(secret context), keep the next legal entry point (LEP)

= Change to Untrusted mode

« If Untrusted and inst{Auth}=true, and the process has a
secret context in the SSS (and inst{address}==LEP)

s Restore the secret context
s Change to Trusted mode

_~

TECHNION
M lsraelInstitte — Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

.,
SMU Sealed Storage

- May store secret context of one or more
programs
= Can be implemented using a register window
(~1 clock cycle for switch)

« Upon context switch, may store content into
the program’s memory space
= Takes ~40 cycles on top of ~2k cycles of C.S.
= Protected automatically by memory encryption

= Triggered by a watchdog for changing the page
table register (microcode)

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Stack Management

« Untrusted code (on behalf of the secure
process) require an accessible stack

« Use two stacks: Secret and Non-secret

= The secret stack is signed and encrypted - used
for the trusted code (by conventional memory
instructions)

= The non-secret is clear - used by untrusted code
» Stack pointer is switched with the secure state
switch

= Secure stack is automatically created and

initialized by the program —details in the paper
TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

.,
Problem #3: Using Untrusted Code

« Library functions: embed into the binary, when
preparing for SeM
= Becomes trusted

» System calls are still required

 Solution: use new syscallX instructions that keep a
set of registers untouched on switch to untrusted
= Replace original syscall instructions on preparing for
SeM

= Static analysis to determine the system call needs —
details in the paper

_~

TECHNION
M lsraelInstitute— Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

.,
SeM-Prepare

« Input: a compiled binary

 Instrumenting the binary for preparing it for the
cloud (deployment)
= Statically embed shared libraries
= Attach itself with the Key Storage entry

Allocate and initialize (InitA) the secure stack

o |nitialize memory on allocation

= Replace syscall instructions with syscallX

= |O accesses: enc and dec by software (wrap
syscalls)

« When done, encrypt and sign

O

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Evaluation

- SPEC CPU 2006 benchmark suite
- Prepared by SeM-Prepare
« Evaluated by SeM-Simulator

= Memory encryption

= Secure Access enforcement

= Security modes and register switch

= Support new SeM instructions: memory, system
calls.

» Purpose: prove applicability and measure
performance

_~

TECHNION
M eraelnetinste - Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Results
. 5.0 B %Reduction with Mem Enc

4.5 B %Reduction without Mem Enc

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

® -

_~

TECHNION
M lsraelnstitute - Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

Results

‘ 5.0 B %Reduction with Mem Enc
4.5 m %Reduction without Mem Enc
4.0
3.5
3.0
2.5
2.0
1.5 1.9%
1.0
0.5
® o | 0.1%
< 3 o AN < K o * e
I N P R N S S SR G
> 0 \@,‘o \\‘Q 0"’0 $°®) ,boo @Q ?’\@
@Q QQ/ +’b\ o

_~

TECHNION
M lrselinstitute— Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

Results

5.0 B %Reduction with Mem Enc

4.5 m %Reduction without Mem Enc

4.0 % Total 10 (100B for 1M instructions)

3.5 # Total Mem Allocation (10B for 1k instructions)

3.0
2.5
2.0
1.5
1.0
0.5
0.0

_~

TECHNION
M lsraelInstitute— Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

Conclusions

- SeM is a secure architecture extension
= Can be easily added to existing CPU architectures
s Supports existing binaries — automatically
Instrumented
= Negligible area (~0.01%) and performance (~2%)
costs
- SeM monitors memory <& cache and cache & execution
unit
o Hardware separation between different security domains
- Based on simple in-cache metadata {Auth, OID}
= Protect the context and flow of the secure application
« Ongoing work (advanced stages)
= Secure multi-threading and multi-node computation (incl.

&= reccnvioi€lerogeneous)
M e ree \ AfirsShwarts, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Additional Slides

_~

TECHNION
M lsraelInstitte — Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

.,
Security Management Unit (SMU)

< ﬁEncryption < From cache (WB) . A
To untrusted L path < >
Memory Key SMU Instructions
enerato Instructions | andreturn

FE values
Key table
RSA
. J

From untrusted v ¢
CPUregs

Memory .
DecrypPtion| 1, cache (Fetch) SMU Sealed >
path) > Storage Cache o

TECHNION
M srzetinstitete Ofjr Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

of Technology

