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Motivation

» Clouds are promising
= Pay per use
s No overhead costs
= Establish and discard resources on the fly

« Security limits adoption
= Risks at many levels

= Software: other users (competitors), OS, hypervisor,
VMM

s Privileged attacker: exploit bugs, cloud owner
= Hardware: physical attacks
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Threat Model

« Platform software
= Hypervisor, VMM, OS are untrusted
s Any management software is untrusted

» Platform hardware
= Memory, network, board signals are untrusted
= CPU is trusted — not internally snooped or modified

« An attacker has full control of the machine

= Can implant software or hardware before or during
the operation of the program
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Previous Works

- Software based:
= Easy to adopt, no hardware changes are required

o Some software must be trusted; untrusted cloud owner?
- Exceptions: software based, hardware verified

= Software performs security tasks — performance overheads
- Hardware:
= Commonly: only the CPU is trusted.

= Many do not support existing binaries, and performance is
low

= Intel SGX
- Only matches programs developed for it
- Limited performance
= Software on top of SGX:
- E.g., Haven, PANOPLY, Graphene, SCONE, ...
- Support for some applications, still performance issues
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Goals

- Keep confidentiality and integrity of
= Data: input, temporary, output
= Code
= State of execution
« While also:
s Support existing applications (binaries)
s Support conventional systems: multi-tasking,
Interrupts, signals, system calls, etc.
= High performance execution
= Low power / area overheads
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Explicitly, How to..

 Problem #1: Protect code and data
* Problem #2: Protect state and flow
» Problem #3: Using untrusted code

Problem #4: Thread management
» Problem #5: Multi-node integrity
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Secure Machine (SeM) Arch. Ext.
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Problem #1: Protect Code and Data

- Common approach: memory encryption

- Code and data: signed and encrypted when in untrusted
memory, clear when in cache

= Counter mode encryption (e.g., GCM)

= Signatures (e.g., GHASH) and a hash tree

- Key Storage: securely store secret keys

= Per process, or group of processes

= Keys: write-only for software to form a Key Entry
- By using public key cryptography

= Upon start, attach with the process ID(s) — details in the
paper

- But what about cached data?

= Main idea: couple instructions and data by a security
domain
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Memory = Cache

- On cache miss: fetch block from memory 2= p Pt

Cache
Decrypt and validate
If validated correctly, fetch decrypted bIocImT_u th? u

[m]

[m]

Validate

Decrypt T
A Untrusted

read memory

[m]

else, fetch original

To cache: data, Auth (true/false),
owner ID (ID in the Key Storage)

- Cache blocks:
= Each block also has Auth bit and OID
= {Auth,OID} serves as the Security Domain of the block
Cache |Auth |OID
d/m.d. true 23
d/m.d. false 60

[m]
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Cache = Memory

« Upon eviction: If Auth=t, sign and encrypt
= Using the keys in the Key Storage (for owner ID)
= Also update the integrity structure

CPU Data Auth

- Else: evict as is [ cache v
Encrypt

Y
Sign
nov *yes

Auth?

| Untrusted
memory write
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Cache & Exec Unit

« On instruction fetch, also fetch Auth and OID

- Secure Access

= On each cache access (memory instruction - load,
store,..)

If inst{Auth,OID}==data{Auth,OID}
allow access

else
reject

a

a

O

a
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Secure Access
E_

metadata Load R1, True
metadata Oxﬁ%@bD
metadata 0x5678
metadata 0x1122
Cache Miss!
SMU Validate
Untrusted
Memory

~
TECHNION
Israel Institute
of Technology

Ofir Shwartz, Electrical Engineering Department

>

Grant!

30>

Reject

35

OxABCD

Execution
Unit

Secure Machine (SeM), HASP 2017



Secure Access: Benefits

- Safe: foreign code cannot validate correctly
= Even if privileged
= Must be validated to access validated (protected) data
- Automatic boundary between trusted and untrusted
worlds

s Unmodified code cannot expose memory data or
Import unauthorized memory data by mistake

« Performance: adversarial blocks co-reside in the
cache
s No added evictions on top of a regular machine

s The system matches the performance the plain
memory encryption subsystem in use (encrypt and
sign) (~2%)
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Special Memory Instructions

« Must be validated to run:

» StoreNA — store and set Auth=false
= Send data to untrusted code

« LoadNA — load from a block with Auth=false
o Read data from untrusted code

« InitA — store zeros to a memory region, sign
correctly

= |nitialize newly allocated memory
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Problem #2: Protect State and Flow

- State: register values; Flow: seq. of instructions

- Example: Interrupt issues an untrusted
Instruction unexpectedly
= Register values are exposed (secret context)

= When back, need to enforce correct register
values and correct instruction
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Security Modes (Cache <~ Exec Unit)

- Work in two modes: trusted and untrusted
s Trusted mode: only runs validated (Auth=t) instructions
= Untrusted mode: only runs non-validated instructions
s Switch automatically

« If Trusted and inst{Auth}=false

= Store reg values in SMU Sealed Storage (SSS) and clear
(secret context), keep the next legal entry point (LEP)

= Change to Untrusted mode

« If Untrusted and inst{Auth}=true, and the process has a
secret context in the SSS (and inst{address}==LEP)

s Restore the secret context
s Change to Trusted mode
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SMU Sealed Storage

- May store secret context of one or more
programs
= Can be implemented using a register window
(~1 clock cycle for switch)

« Upon context switch, may store content into
the program’s memory space
= Takes ~40 cycles on top of ~2k cycles of C.S.
= Protected automatically by memory encryption

= Triggered by a watchdog for changing the page
table register (microcode)
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Stack Management

« Untrusted code (on behalf of the secure
process) require an accessible stack

« Use two stacks: Secret and Non-secret

= The secret stack is signed and encrypted - used
for the trusted code (by conventional memory
instructions)

= The non-secret is clear - used by untrusted code
» Stack pointer is switched with the secure state
switch

= Secure stack is automatically created and

initialized by the program —details in the paper
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Problem #3: Using Untrusted Code

« Library functions: embed into the binary, when
preparing for SeM
= Becomes trusted

» System calls are still required

 Solution: use new syscallX instructions that keep a
set of registers untouched on switch to untrusted
= Replace original syscall instructions on preparing for
SeM

= Static analysis to determine the system call needs —
details in the paper
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SeM-Prepare

« Input: a compiled binary

 Instrumenting the binary for preparing it for the
cloud (deployment)
= Statically embed shared libraries
= Attach itself with the Key Storage entry

Allocate and initialize (InitA) the secure stack

o |nitialize memory on allocation

= Replace syscall instructions with syscallX

= |O accesses: enc and dec by software (wrap
syscalls)

« When done, encrypt and sign

O
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Evaluation

- SPEC CPU 2006 benchmark suite
- Prepared by SeM-Prepare
« Evaluated by SeM-Simulator

= Memory encryption

= Secure Access enforcement

= Security modes and register switch

= Support new SeM instructions: memory, system
calls.

» Purpose: prove applicability and measure
performance
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Results
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Results
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Conclusions

- SeM is a secure architecture extension
= Can be easily added to existing CPU architectures
s Supports existing binaries — automatically
Instrumented
= Negligible area (~0.01%) and performance (~2%)
costs
- SeM monitors memory <& cache and cache & execution
unit
o Hardware separation between different security domains
- Based on simple in-cache metadata {Auth, OID}
= Protect the context and flow of the secure application
« Ongoing work (advanced stages)
= Secure multi-threading and multi-node computation (incl.

&= reccnvioi€lerogeneous)
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Additional Slides
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