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Motivation 
•  Clouds are promising 
▫  Pay per use 
▫  No overhead costs 
▫  Establish and discard resources on the fly 

•  Security limits adoption 
▫  Risks at many levels 
▫  Software: other users (competitors), OS, hypervisor, 

VMM 
▫  Privileged attacker: exploit bugs, cloud owner 
▫  Hardware: physical attacks 
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Threat Model 

• Platform software 
▫  Hypervisor, VMM, OS are untrusted 
▫  Any management software is untrusted 

• Platform hardware 
▫  Memory, network, board signals are untrusted 
▫  CPU is trusted – not internally snooped or modified 

• An attacker has full control of the machine 
▫  Can implant software or hardware before or during 

the operation of the program  
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Previous Works 
•  Software based:  
▫  Easy to adopt, no hardware changes are required 
▫  Some software must be trusted; untrusted cloud owner? 

�  Exceptions: software based, hardware verified 
▫  Software performs security tasks – performance overheads 

•  Hardware: 
▫  Commonly: only the CPU is trusted.  
▫  Many do not support existing binaries, and performance is 

low 
▫  Intel SGX 

�  Only matches programs developed for it 
�  Limited performance 

▫  Software on top of SGX:  
�  E.g., Haven, PANOPLY, Graphene, SCONE, … 
�  Support for some applications, still performance issues 
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Goals 
•  Keep confidentiality and integrity of 
▫  Data: input, temporary, output 
▫  Code 
▫  State of execution 

•  While also: 
▫  Support existing applications (binaries) 
▫  Support conventional systems: multi-tasking, 

interrupts, signals, system calls, etc. 
▫  High performance execution 
▫  Low power / area overheads 
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Explicitly, How to.. 

• Problem #1: Protect code and data 
• Problem #2: Protect state and flow 
• Problem #3: Using untrusted code 

• Problem #4: Thread management 
• Problem #5: Multi-node integrity 
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Secure Machine (SeM) Arch. Ext. 
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Problem #1: Protect Code and Data 
•  Common approach: memory encryption 
▫  Code and data: signed and encrypted when in untrusted 

memory, clear when in cache 
▫  Counter mode encryption (e.g., GCM) 
▫  Signatures (e.g., GHASH) and a hash tree 

•  Key Storage: securely store secret keys 
▫  Per process, or group of processes 
▫  Keys: write-only for software to form a Key Entry 

�  By using public key cryptography 
▫  Upon start, attach with the process ID(s) – details in the 

paper 

•  But what about cached data? 
▫  Main idea: couple instructions and data by a security 

domain 
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Memory ð Cache 
•  On cache miss: fetch block from memory 
▫  Decrypt and validate 
▫  If validated correctly, fetch decrypted block;  
▫          else, fetch original 
▫  To cache: data, Auth (true/false),  

owner ID (ID in the Key Storage) 
•  Cache blocks: 
▫  Each block also has Auth bit and OID 
▫  {Auth,OID}  serves as the Security Domain of the block 

Cache Auth OID 
d/m.d. true 23 
d/m.d. false 60 
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Cache ð Memory 

• Upon eviction: If Auth=t, sign and encrypt 
▫  Using the keys in the Key Storage (for owner ID)  
▫  Also update the integrity structure 

• Else: evict as is 
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Cache ó Exec Unit 

• On instruction fetch, also fetch Auth and OID 

• Secure Access 
▫  On each cache access (memory instruction - load, 

store,..) 
▫  If inst{Auth,OID}==data{Auth,OID}  
▫            allow access 
▫   else 
▫             reject 
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Secure Access 
Metadata Data Auth OID 

Instruction Fetch 

Execution 
Unit 

Untrusted 
Memory 

Cache Miss! 

SMU Validate 

metadata Load R1,
[20] 

True 30 
metadata 0xABCD True 30 
metadata 0x5678 false 30 
metadata 0x1122 true 35 

Grant! 
Reject 

Load R1,[20] 
 (Auth=true, OID=30) 

0xABCD 

Load R1,[50] 
 (Auth=true, OID=30) 

Load R1,[60] 
 (Auth=true, OID=30) 
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Secure Access: Benefits 
•  Safe: foreign code cannot validate correctly 
▫  Even if privileged 
▫  Must be validated to access validated (protected) data 

•  Automatic boundary between trusted and untrusted 
worlds 
▫  Unmodified code cannot expose memory data or 

import unauthorized memory data by mistake 
•  Performance: adversarial blocks co-reside in the 

cache 
▫  No added evictions on top of a regular machine 
▫  The system matches the performance the plain 

memory encryption subsystem in use (encrypt and 
sign) (~2%) 
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Special Memory Instructions 

• Must be validated to run: 
• StoreNA – store and set Auth=false 
▫  Send data to untrusted code 

•  LoadNA – load from a block with Auth=false 
▫  Read data from untrusted code 

•  InitA – store zeros to a memory region, sign 
correctly 
▫  Initialize newly allocated memory 
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Problem #2: Protect State and Flow 

• State: register values; Flow: seq. of instructions 

• Example: Interrupt issues an untrusted 
instruction unexpectedly 
▫  Register values are exposed (secret context) 
▫  When back, need to enforce correct register 

values and correct instruction 
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Security Modes (Cache ó Exec Unit) 

•  Work in two modes: trusted and untrusted 
▫  Trusted mode: only runs validated (Auth=t) instructions 
▫  Untrusted mode: only runs non-validated instructions 
▫  Switch automatically 

•  If Trusted and inst{Auth}=false 
▫  Store reg values in SMU Sealed Storage (SSS) and clear 

(secret context), keep the next legal entry point (LEP) 
▫  Change to Untrusted mode 

•  If Untrusted and inst{Auth}=true, and the process has a 
secret context in the SSS (and inst{address}==LEP) 
▫  Restore the secret context 
▫  Change to Trusted mode 
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SMU Sealed Storage 

• May store secret context of one or more 
programs 
▫ Can be implemented using a register window 

(~1 clock cycle for switch) 

• Upon context switch, may store content into 
the program’s memory space 
▫  Takes ~40 cycles on top of ~2k cycles of C.S. 
▫  Protected automatically by memory encryption 
▫  Triggered by a watchdog for changing the page 

table register (microcode) 
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Stack Management 

• Untrusted code (on behalf of the secure 
process) require an accessible stack 

• Use two stacks: Secret and Non-secret 
▫  The secret stack is signed and encrypted - used 

for the trusted code (by conventional memory 
instructions) 
▫  The non-secret is clear - used by untrusted code 

• Stack pointer is switched with the secure state 
switch 
▫  Secure stack is automatically created and 

initialized by the program –details in the paper 
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Problem #3: Using Untrusted Code 

•  Library functions: embed into the binary, when 
preparing for SeM 
▫  Becomes trusted 

•  System calls are still required 

•  Solution: use new syscallX  instructions that keep a 
set of registers untouched on switch to untrusted 
▫  Replace original syscall instructions on preparing for 

SeM 
▫  Static analysis to determine the system call needs – 

details in the paper 
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SeM-Prepare 
•  Input: a compiled binary 
•  Instrumenting the binary for preparing it for the 

cloud (deployment) 
▫  Statically embed shared libraries 
▫  Attach itself with the Key Storage entry 
▫  Allocate and initialize (InitA) the secure stack 
▫  Initialize memory on allocation 
▫  Replace syscall instructions with syscallX 
▫  IO accesses: enc and dec by software (wrap 

syscalls) 
• When done, encrypt and sign 
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Evaluation 

• SPEC CPU 2006 benchmark suite 
• Prepared by SeM-Prepare 
• Evaluated by SeM-Simulator 
▫  Memory encryption 
▫  Secure Access enforcement 
▫  Security modes and register switch  
▫  Support new SeM instructions: memory, system 

calls. 
• Purpose: prove applicability and measure 

performance 
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Results 
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Results 

1.9%

0.1%
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Results 
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Conclusions 
• SeM is a secure architecture extension 
▫  Can be easily added to existing CPU architectures 
▫  Supports existing binaries – automatically 

instrumented 
▫  Negligible area (~0.01%) and performance (~2%) 

costs 
•  SeM monitors memory ó cache and cache ó execution 

unit 
▫  Hardware separation between different security domains  
▫  Based on simple in-cache metadata {Auth, OID} 
▫  Protect the context and flow of the secure application 

•  Ongoing work (advanced stages)  
▫  Secure multi-threading and multi-node computation (incl. 

heterogeneous) 
▫  Multi-node integrity 
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Additional Slides 
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Security Management Unit (SMU) 


