
SeM: A CPU Architecture Extension
for Secure Remote Computing

Ofir Shwartz, Yitzhak Birk

Hardware and Architectural
Support for Security and Privacy

(HASP) 2017

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Motivation
•  Clouds are promising
▫  Pay per use
▫  No overhead costs
▫  Establish and discard resources on the fly

•  Security limits adoption
▫  Risks at many levels
▫  Software: other users (competitors), OS, hypervisor,

VMM
▫  Privileged attacker: exploit bugs, cloud owner
▫  Hardware: physical attacks

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Threat Model

• Platform software
▫  Hypervisor, VMM, OS are untrusted
▫  Any management software is untrusted

• Platform hardware
▫  Memory, network, board signals are untrusted
▫  CPU is trusted – not internally snooped or modified

• An attacker has full control of the machine
▫  Can implant software or hardware before or during

the operation of the program

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Previous Works
•  Software based:
▫  Easy to adopt, no hardware changes are required
▫  Some software must be trusted; untrusted cloud owner?

�  Exceptions: software based, hardware verified
▫  Software performs security tasks – performance overheads

•  Hardware:
▫  Commonly: only the CPU is trusted.
▫  Many do not support existing binaries, and performance is

low
▫  Intel SGX

�  Only matches programs developed for it
�  Limited performance

▫  Software on top of SGX:
�  E.g., Haven, PANOPLY, Graphene, SCONE, …
�  Support for some applications, still performance issues

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Goals
•  Keep confidentiality and integrity of
▫  Data: input, temporary, output
▫  Code
▫  State of execution

•  While also:
▫  Support existing applications (binaries)
▫  Support conventional systems: multi-tasking,

interrupts, signals, system calls, etc.
▫  High performance execution
▫  Low power / area overheads

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Explicitly, How to..

• Problem #1: Protect code and data
• Problem #2: Protect state and flow
• Problem #3: Using untrusted code

• Problem #4: Thread management
• Problem #5: Multi-node integrity

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Secure Machine (SeM) Arch. Ext.

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Problem #1: Protect Code and Data
•  Common approach: memory encryption
▫  Code and data: signed and encrypted when in untrusted

memory, clear when in cache
▫  Counter mode encryption (e.g., GCM)
▫  Signatures (e.g., GHASH) and a hash tree

•  Key Storage: securely store secret keys
▫  Per process, or group of processes
▫  Keys: write-only for software to form a Key Entry

�  By using public key cryptography
▫  Upon start, attach with the process ID(s) – details in the

paper

•  But what about cached data?
▫  Main idea: couple instructions and data by a security

domain

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Memory ð Cache
•  On cache miss: fetch block from memory
▫  Decrypt and validate
▫  If validated correctly, fetch decrypted block;
▫  else, fetch original
▫  To cache: data, Auth (true/false),

owner ID (ID in the Key Storage)
•  Cache blocks:
▫  Each block also has Auth bit and OID
▫  {Auth,OID} serves as the Security Domain of the block

Cache Auth OID
d/m.d. true 23
d/m.d. false 60

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Cache ð Memory

• Upon eviction: If Auth=t, sign and encrypt
▫  Using the keys in the Key Storage (for owner ID)
▫  Also update the integrity structure

• Else: evict as is

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Cache ó Exec Unit

• On instruction fetch, also fetch Auth and OID

• Secure Access
▫  On each cache access (memory instruction - load,

store,..)
▫  If inst{Auth,OID}==data{Auth,OID}
▫  allow access
▫  else
▫  reject

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Secure Access
Metadata Data Auth OID

Instruction Fetch

Execution
Unit

Untrusted
Memory

Cache Miss!

SMU Validate

metadata Load R1,
[20]

True 30
metadata 0xABCD True 30
metadata 0x5678 false 30
metadata 0x1122 true 35

Grant!
Reject

Load R1,[20]
 (Auth=true, OID=30)

0xABCD

Load R1,[50]
 (Auth=true, OID=30)

Load R1,[60]
 (Auth=true, OID=30)

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Secure Access: Benefits
•  Safe: foreign code cannot validate correctly
▫  Even if privileged
▫  Must be validated to access validated (protected) data

•  Automatic boundary between trusted and untrusted
worlds
▫  Unmodified code cannot expose memory data or

import unauthorized memory data by mistake
•  Performance: adversarial blocks co-reside in the

cache
▫  No added evictions on top of a regular machine
▫  The system matches the performance the plain

memory encryption subsystem in use (encrypt and
sign) (~2%)

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Special Memory Instructions

• Must be validated to run:
• StoreNA – store and set Auth=false
▫  Send data to untrusted code

•  LoadNA – load from a block with Auth=false
▫  Read data from untrusted code

•  InitA – store zeros to a memory region, sign
correctly
▫  Initialize newly allocated memory

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Problem #2: Protect State and Flow

• State: register values; Flow: seq. of instructions

• Example: Interrupt issues an untrusted
instruction unexpectedly
▫  Register values are exposed (secret context)
▫  When back, need to enforce correct register

values and correct instruction

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Security Modes (Cache ó Exec Unit)

•  Work in two modes: trusted and untrusted
▫  Trusted mode: only runs validated (Auth=t) instructions
▫  Untrusted mode: only runs non-validated instructions
▫  Switch automatically

•  If Trusted and inst{Auth}=false
▫  Store reg values in SMU Sealed Storage (SSS) and clear

(secret context), keep the next legal entry point (LEP)
▫  Change to Untrusted mode

•  If Untrusted and inst{Auth}=true, and the process has a
secret context in the SSS (and inst{address}==LEP)
▫  Restore the secret context
▫  Change to Trusted mode

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

SMU Sealed Storage

• May store secret context of one or more
programs
▫ Can be implemented using a register window

(~1 clock cycle for switch)

• Upon context switch, may store content into
the program’s memory space
▫  Takes ~40 cycles on top of ~2k cycles of C.S.
▫  Protected automatically by memory encryption
▫  Triggered by a watchdog for changing the page

table register (microcode)

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Stack Management

• Untrusted code (on behalf of the secure
process) require an accessible stack

• Use two stacks: Secret and Non-secret
▫  The secret stack is signed and encrypted - used

for the trusted code (by conventional memory
instructions)
▫  The non-secret is clear - used by untrusted code

• Stack pointer is switched with the secure state
switch
▫  Secure stack is automatically created and

initialized by the program –details in the paper

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Problem #3: Using Untrusted Code

•  Library functions: embed into the binary, when
preparing for SeM
▫  Becomes trusted

•  System calls are still required

•  Solution: use new syscallX instructions that keep a
set of registers untouched on switch to untrusted
▫  Replace original syscall instructions on preparing for

SeM
▫  Static analysis to determine the system call needs –

details in the paper

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

SeM-Prepare
•  Input: a compiled binary
•  Instrumenting the binary for preparing it for the

cloud (deployment)
▫  Statically embed shared libraries
▫  Attach itself with the Key Storage entry
▫  Allocate and initialize (InitA) the secure stack
▫  Initialize memory on allocation
▫  Replace syscall instructions with syscallX
▫  IO accesses: enc and dec by software (wrap

syscalls)
• When done, encrypt and sign

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Evaluation

• SPEC CPU 2006 benchmark suite
• Prepared by SeM-Prepare
• Evaluated by SeM-Simulator
▫  Memory encryption
▫  Secure Access enforcement
▫  Security modes and register switch
▫  Support new SeM instructions: memory, system

calls.
• Purpose: prove applicability and measure

performance

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Results

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Results

1.9%

0.1%

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Results

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Conclusions
• SeM is a secure architecture extension
▫  Can be easily added to existing CPU architectures
▫  Supports existing binaries – automatically

instrumented
▫  Negligible area (~0.01%) and performance (~2%)

costs
•  SeM monitors memory ó cache and cache ó execution

unit
▫  Hardware separation between different security domains
▫  Based on simple in-cache metadata {Auth, OID}
▫  Protect the context and flow of the secure application

•  Ongoing work (advanced stages)
▫  Secure multi-threading and multi-node computation (incl.

heterogeneous)
▫  Multi-node integrity

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Additional Slides

Ofir Shwartz, Electrical Engineering Department Secure Machine (SeM), HASP 2017

Security Management Unit (SMU)

