

Fault Injection Attacks on Emerging Non-Volatile Memories

Mohammad Nasim Imtiaz Khan and Swaroop Ghosh

School of Electrical Engineering and Computer Science The Pennsylvania State University

Why Emerging NVMs?

Recent Commercialization of Emerging NVMs

Phase Change RAM

Intel unveils its Optane hyperfast memory

Intel released few key details around its new non-volatile memory

Published: March 9, 2017

Everspin unveils a new low latency, PCIe NVMe card based on Spin Torque MRAM

ReRAM

Western Digital to Use 3D ReRAM as Storage Class Memory for Special-Purpose SSDs

by Anton Shilov on August 12, 2016 8:00 AM EST

NVM: RRAM

- Read/write latency
 - Read/write of RRAM
- Read/write
 - Sensing RRAM resistance
 - Write: Conduction Filament
- Features
 - Footprint = $\sim 12-24F^2$
 - Random access
- Suitable for LLC/Main Memory

NVM Characteristics-Long Latency/High Current

- Long read/write latency (1ns/10ns for RRAM)
- Latency varies with process and temperature variation
- High write current (~100μA/bit)
- High read current (~10μA/bit)
- V_{dd} Droop/Gnd bounce due to high current

Supply Noise: Ground Bounce Modeling

Supply line modeled for 65nm technology

[1] "Interconnect: Capacitance and Resistance for 65nm technology." http://ptm.asu.edu/, 2005. [2] "Wire Capacitance and Resistance Calculator for 65nm." <u>http://users.ece.utexas</u>.edu/~mcdermot/vlsi-[2/Wire_Capacitance_and_Resistance_65nm.xls, 2008.

Lab of Green and secure Integrated Circuit Systems (LOGICS)

Supply Noise: Ground Bounce Modeling (Contd.)

- R₁: Resistance from M₈ to M₁
- CS: Constant Current Source
 - Each one represents read/write current of 128bits

Supply Noise: Ground Bounce Vs Write Data Pattern

- Depends on write data pattern
- Lowest/highest ~51mV/~352mV
- Can be controlled at the granularity of 1mV

Supply Noise: Ground Bounce Vs Read Data Pattern

- Depends on read data pattern
- Lowest/highest ~13mV/~23mV
- Can be controlled at the granularity of 0.04mV

Parallel Accesses

- Read/write takes multiple clock cycles
- Parallel operations on independent banks
 - Increases throughput
- Worsen supply noise
- Operations can affect each other

Supply Noise: Ground Bounce Propagation

- Victim/adversary writes P11/P00 in Bank_x/Bank_y simultaneously
- Victim incurs both
 - Self inflicted bounce
 - Adversary inflicted bounce
- Adversary Inflicted bounce reduces as distance increases

Impact of Supply Noise on Write Operation

- Supply noise:
 - 0 to 50mV: No failure
 - 50 to 120mV: $0 \rightarrow 1$ write fails
 - >120mV: both write polarity fails

Fault Injection Attacks

DoS Attack

Specific Polarity Fault Injection

Impact of Supply Noise on Read Operation

- Supply noise:
 - 0 to 150mV : No failure
 - >150mV : Read '1' Fails

Detection of Victim's Write Operation

1. Keep reading predefined store data at different location

2. Sense read failure

3. If read failure found at one address

- Victim writes in nearby location

- Write detected!
- 4. Adversary writes to the nearby address (where read failure)
 - Generates supply noise
- Can cause DoS/Fault injection based on noise generation

Details to appear in ISLPED 2018

Mitigation

- Only sequential accesses
 - Hurts throughput
- Novel architecture
 - Parallel accesses with highest physical distance
 - Alleviates the issue to some extent
- Good quality power grid
 - Incurs area-overhead
 - Alleviates the issue to some extent
- Power rail separation for each bank
 - Incurs area-overhead
 - Alleviates the issue to some extent
- Slow down the system clock
 - Hurts the throughput
- Memory Testing
 - Exhausted testing incurs high test time
 - Weak bits still vulnerable to attacks specially unspecified temp. ranges

Conclusion

- We discussed new fault models specific to NVMs
- We modeled supply noise
- We discussed impact of supply noise on read/write
- We described fault injection attacks on NVMs
- We presented countermeasures

Acknowledgements

This work was supported in part by

National Science Foundation (NSF) CNS- 1722557, CCF-1718474 and DGE-1723687

Defense Advanced Research Projects Agency (DARPA) Young Faculty Award [#D15AP00089]

Thank You!

Contact:

Md Nasim Imtiaz Khan (muk392@psu.edu) Dr Swaroop Ghosh (szg212@psu.edu)