
Cache Timing Side-Channel
Vulnerability Checking with

Computation Tree Logic

Shuwen Deng, Wenjie Xiong and Jakub Szefer
Yale University

HASP
June 2, 2018

Memory System

2

Typical set-associative cache

ways

sets

Cache

cache enables fast access to the data

CPU Memory

3

s
0

s
1

s
4

s
2

s
6

ld
issue

{probe}

{hit}

{miss}

{replace}{bypass}

ISA-level Microarchitecture-level

ld
return

{force
evict}

s
3

{return data}

s
5la

te
n
cy

 ↔

ca

ch
e

h
it

 o
r

m
is

s

Cache State Machine

fast
access

slow
accesstiming latency ⟷

cache hit & miss

4

• For load/store instruction, time differs between hits and misses
• For flush instruction, time depends on data existence

• Attacker’s Goal: get information of the address of victim’s
sensitive data by observing the timing difference

• Threat Model:
– An attacker (A) shares the same cache with a victim (V)
– The attacker cannot directly access the cache state machine
– The attacker can observe the timing of the victim or itself
– The attacker can combine timing observation with some other knowledge

• The attacker knows some source code of the victim
• The attacker can force victim to execute a specific function

• E.g. Flush + Reload Attack

Cache Timing Side-Channel Attacks

5

Set-associative cache

ways

sets

1- Attacker
primes each

cache set
2- Victim
accesses

critical data

3- Attacker
probes each
cache set
(measure time)

Evicted
Access
Time

E.g. Prime + Probe Attack

E.g. Flush + Reload Attack

6

Evicted
Access

TimeSet-associative cache

ways

sets

1- Flush each
line in the cache

2- Victim
accesses critical
data

3- Attacker
reloads critical
data by running
specific process
(measure time)

7

Spectre & Meltdown Attack

• speculative executions
– Variant 1: Bounds Check
– Variant 2: Branch Target Injection
– Variant 3: Rogue Data Cache

• Variant 3a: Rogue System Register
– Variant 4: Speculative Store

• timing side-channel in the cache

8

Spectre & Meltdown Attack

• Uses speculative executions
• Leverages timing side-channel in

the cache

9

Use
Computation

Tree Logic (CTL)

Model execution
paths of the

processor cache
focusing on side-
channel attacks

Develop
Cache Access

Model

Three-step
single-cache-
block-access

model
construction

Analyze
Timing

Vulnerabilities

Exhaustive
search for

possible attacks
based on three-

step model

Contribution

10

condition description
𝑉#/𝐴# A specific known memory location.
𝑉& A piece of memory containing data from a range of

victim’s memory addresses is accessed.
𝑉'/𝐴' single-cache-block access to “remove” the cache

block contents
⋆ Attacker has no knowledge about memory location

𝑉#/𝐴#, 𝑉&, 𝑉'/𝐴', ⋆ 𝑉#/𝐴#, 𝑉&, 𝑉'/𝐴'
𝑉#/𝐴#, 𝑉&, 𝑉'/𝐴'

Three-Step Single-Cache-Block-Access Model
We use three steps to model all possible cache
side channel attacks:

𝑆𝑡𝑒𝑝0 ⇝ 𝑆𝑡𝑒𝑝1 ⇝ 𝑆𝑡𝑒𝑝2

The initial state of
the cache block

Actions of victim
or attacker

Interference &
final observation

11

• Prime + Probe Attack

– 𝐸𝐹(𝐸(𝐸 𝐴#	𝑈𝑉& 𝑈𝐴#))

Vulnerability Examples

Set-associative cache

ways

sets

1- Attacker
Primes each

cache set

2- Victim
accesses

critical data

3- Attacker
Probes each
cache set
(measure time)

Evicted
Access
Time

12

• Flush + Reload Attack

– 𝐴' ⇝ 𝑉& ⇝ 𝐴#
– 𝑉' ⇝ 𝑉& ⇝ 𝐴#

Vulnerability Examples

Evicted
Access

TimeSet-associative cache

ways

sets

1- Flush each
line in the cache

2- Victim
accesses critical
data

3- Attacker
Reloads critical
data by running
specific process
(measure time)

condition description
𝑉#/𝐴# A specific known memory location.
𝑉& A piece of memory containing data from a range of victim’s

memory addresses is accessed.
𝑉'/𝐴' single-cache-block access to “remove” the cache block contents

13

Why three-step model can cover all?
• One cache access

– Interference does not exist
• Two cache accesses

– Same as three-step model with 𝑆𝑡𝑒𝑝0 to be “ ⋆ ”
• More than three cache accesses

– {⋯ ⇝⋆⇝ ⋯} can be divided into two parts
– ⋯ ⇝ 𝐴' ⇝ 𝐴' ⇝ ⋯ , ⋯ ⇝ 𝐴' ⇝ 𝑉' ⇝ ⋯ , {⋯ ⇝
𝐴# ⇝ 𝑉# ⇝ ⋯}, {⋯ ⇝ 𝑉& ⇝ 𝑉& ⇝ ⋯},… can be reduced
to ⋯ ⇝ 𝐴' ⇝ ⋯ , ⋯ ⇝ 𝑉' ⇝ ⋯ , {⋯ ⇝ 𝑉# ⇝
⋯}, ⋯ ⇝ 𝑉& ⇝ ⋯ ,… , respectively

– ⋯ ⇝ (𝐴'/𝑉' ∕ 𝐴# ∕ 𝑉#) ⇝ 𝑉& ⇝ (𝐴'/𝑉' ∕ 𝐴# ∕ 𝑉#) ⇝ ⋯
maps to effective vulnerabilities represented by three-
step model

Soundness of Three-Step Model

14

• More than three cache accesses
– {⋯ ⇝⋆⇝ ⋯} can be divided into two parts
– ⋯ ⇝ 𝐴' ⇝ 𝐴' ⇝ ⋯ , ⋯ ⇝ 𝐴' ⇝ 𝑉' ⇝ ⋯ ,… , {⋯ ⇝
𝐴# ⇝ 𝑉# ⇝ ⋯},… , {⋯ ⇝ 𝑉& ⇝ 𝑉& ⇝ ⋯} can be reduced
to ⋯ ⇝ 𝐴' ⇝ ⋯ , ⋯ ⇝ 𝑉' ⇝ ⋯ ,… , {⋯ ⇝ 𝑉# ⇝
⋯},… , {⋯ ⇝ 𝑉& ⇝ ⋯}, respectively

– ⋯ ⇝ (𝐴'/𝑉' ∕ 𝐴# ∕ 𝑉#) ⇝ 𝑉& ⇝ (𝐴'/𝑉' ∕ 𝐴# ∕ 𝑉#) ⇝ ⋯
maps to known vulnerabilities represented by three-step
model

Soundness of Three-step Model (b)

15

• Explicit enumeration of all the possible three
steps (6x5x5=150)

• Identify 28 types of cache attacks
– 20 types already known or categorized
– 8 types previously not in literature

• Can be applied to evaluate any cache
architecture with CTL logic

Exhaustive Vulnerability Search

16

S0 S1 S2 Recognized
name

Categor
ization

𝑽𝒙 𝑨𝑹 𝑽𝒙 Type A
𝑽𝒙 𝑽𝑹 𝑽𝒙 Type B
𝑨𝑹 𝑨𝟏 𝑽𝒙 Type C
𝑽𝑹 𝑨𝟏 𝑽𝒙 Type D
𝑨𝟏 𝑨𝟏 𝑽𝒙 Type E
𝑽𝟏 𝑨𝟏 𝑽𝒙 Type F
𝑉& 𝐴# 𝑉& Evict+Time Type G
𝐴' 𝑉# 𝑉& Cache Collision Type H
𝑉' 𝑉# 𝑉& Cache Collision Type I

𝐴# 𝑉# 𝑉& Cache Collision Type J
𝑉# 𝑉# 𝑉& Cache Collision Type K
𝑉& 𝑉# 𝑉& Bernstein’s attack Type L

𝐴' 𝑉& 𝐴' Flush+Flush Type M
𝑉' 𝑉& 𝐴' Flush+Flush Type N

Vulnerability Exhaustive List
S0 S1 S2 Recognized name Catego

rization

𝑉& 𝑉& 𝐴' Flush+Flush Type O
𝐴' 𝑉& 𝑉' Flush+Flush Type P
𝑉' 𝑉& 𝑉' Flush+Flush Type Q
𝑉& 𝑉& 𝑉' Flush+Flush Type R
𝐴' 𝑉& 𝐴# Flush(Evict)+Reload Type S
𝑉' 𝑉& 𝐴# Flush(Evict)+Reload Type T
𝐴# 𝑉& 𝐴# Prime+Probe Type U
𝑽𝟏 𝑽𝒙 𝑨𝟏 Type V
𝑉& 𝑉& 𝐴# Flush(Evict)+Reload Type W
𝐴' 𝑉& 𝑉# Cache Collision Type X
𝑉' 𝑉& 𝑉# Cache Collision Type Y
𝑨𝟏 𝑽𝒙 𝑽𝟏 Type Z
𝑉# 𝑉& 𝑉# Bernstein’s attack Type AA
𝑉& 𝑉& 𝑉# Cache Collision Type AB

17

• Flush + Reload Attack
(Type S, T Attack)
– 𝐴' ⇝ 𝑉& ⇝ 𝐴#
– 𝑉' ⇝ 𝑉& ⇝ 𝐴#

Vulnerability Examples
• New Type V Attack

– 𝑉# ⇝ 𝑉& ⇝ 𝐴#

Set-associative cache

ways

sets

1- Victim
primes each
cache set

2- Victim
accesses

critical data

3- Attacker
probes each
cache set
(measure time)

Evicted
Access
Time

Evicted
Access

TimeSet-associative cache

ways

sets

1- Flush
each line in
the cache

2- Victim
accesses
critical data

3- Attacker
reloads critical
data by running
specific process
(measure time)

𝜓 𝜓 𝜓 𝜓 𝜓18

Treats time as discrete and branching
Can explore different execution paths

• Atomic propositions: , ,…
• Boolean operators: ¬𝜑,𝜑 ∨ 𝜓,𝜑 ∧ 𝜓,…
• Temporal modalities:

– X 𝜓 … “next	𝜓”
– 𝜑	𝑈	𝜓 … “𝜑	until 𝜓”
– F 𝜑 … “eventually 𝜑”
– G 𝜑 … “always 𝜑”

• Path quantifiers:
– E 𝜓 A 𝜓

𝜓
𝜓𝜑𝜑

𝜓𝜑𝜑 𝜑 𝜑 𝜑

𝜑

Computation Tree Logic

Step0

Step1

Step2

19

For a single cache block, model execution paths that represent
vulnerabilities to attacks:

M, s ⊨𝐸𝐹(𝐸(𝐸	 𝑆𝑡𝑒𝑝0	𝑈	𝑆𝑡𝑒𝑝1 	𝑈	𝑆𝑡𝑒𝑝2))

Eventually there exists a
path that corresponds to
the vulnerability:
𝑆𝑡𝑒𝑝0 ⇝ 𝑆𝑡𝑒𝑝1 ⇝ 𝑆𝑡𝑒𝑝2

Three-Step Model in CTL logic

E.g.	𝐴' ⇝ 𝑉& ⇝ 𝐴#
↔ 𝐸𝐹(𝐸(𝐸	 𝐴'𝑈𝑉& 	𝑈𝐴#))

The initial state of
the cache block

Actions of victim
or attacker

Interference &
final observation

20

s
0

s
1

s
4

s
2

{probe}

{miss}

{replace}

s
3

{return
data}

{hit}

Unfold from s
0
 to

computation tree

(s
0
,0)

(s
1
,1) (s

2
,1)

(s
3
,2)(s

4
,2)

(s
0
,3) (s

4
,3)

(s
0
,4)(s

1
,4) (s

2
,4)

(s
3
,5)(s

4
,5)

(s
0
,6) (s

4
,6)

(s
0
,7)(s

1
,7) (s

2
,7)

(s
1
,5) (s

2
,5)

(s
3
,6)(s

4
,6)

(s
0
,7) (s

4
,7)

(s
1
,8) (s

2
,8)(s

3
,8)(s

4
,8)

(s
4
,9)

(s
1
,8) (s

2
,8)

(s
1
,8) (s

2
,8)(s

3
,9)(s

4
,9)

(s
4
,10)

(s
0
,7)

(s
3
,9)(s

4
,9)

(s
4
,10) (s

3
,10)(s

4
,10)

(s
4
,11)

Step 0

Step 1

Step 2

three-step model:

Bounded Computation Tree

21

• hardware design of secure caches
• cache state machine modeling
• checking of vulnerability in CTL logic
• improve CTL modeling

Future Work

22

Summary

• cache state machine modeling
• checking of vulnerability in CTL logic
• improve CTL modeling

Thank you!

Use
Computation

Tree Logic (CTL)

Model execution
paths of the

processor cache
focusing on side-
channel attacks

Develop
Cache Access

Model

Three-step
single-cache-
block-access

model
construction

Analyze
Timing

Vulnerabilities

Exhaustive
search for

possible attacks
based on three-

step model

23

back up slides

24

• One cache access
– Interference does not exist

• Two cache accesses
– Same as three-step model with 𝑆𝑡𝑒𝑝0 to be “ ⋆ ”
– None of them can form an attack

• Three cache accesses
– Exhaustive vulnerability Search and effective

vulnerabilities derived

Soundness of Three-step Model (a)

25

• More than three cache accesses
– {⋯ ⇝⋆⇝ ⋯} can be divided into two parts
– ⋯ ⇝ 𝐴' ⇝ 𝐴' ⇝ ⋯ , ⋯ ⇝ 𝐴' ⇝ 𝑉' ⇝ ⋯ , {⋯ ⇝ 𝐴# ⇝
𝑉# ⇝ ⋯}, ⋯ ⇝ 𝑉& ⇝ 𝑉& ⇝ ⋯ ,… can be reduced to
⋯ ⇝ 𝐴' ⇝ ⋯ , ⋯ ⇝ 𝑉' ⇝ ⋯ , ⋯ ⇝ 𝑉# ⇝ ⋯ , {⋯ ⇝
𝑉& ⇝ ⋯},…, respectively

– ⋯ ⇝ (𝐴'/𝑉' ∕ 𝐴# ∕ 𝑉#) ⇝ 𝑉& ⇝ (𝐴'/𝑉' ∕ 𝐴# ∕ 𝑉#) ⇝ ⋯
maps to effective vulnerabilities represented by three-
step model

Soundness of Three-step Model (b)

