Cache Timing Side-Channel 7¢

Vulnerability Checking with 4" &
Computation Tree Logic "

Shuwen Deng, Wenjie Xiong and Jakub Szefer
Yale University

HASP
June 2, 2018

Memory System

CPU Cache Memory

Typical set-associative cache

— ways — *

cache enables fast access to the data

Cache State Machine

slow

timing latency < access

cache hit & miss fast
dCCeSS

Cache Timing Side-Channel Attacks Yale

For load/store instruction, time differs between hits and misses
For flush instruction, time depends on data existence

Attacker’'s Goal: get information of the address of victim'’s
sensitive data by observing the timing difference

Threat Model:

— An attacker (A) shares the same cache with a victim (V)

— The attacker cannot directly access the cache state machine

— The attacker can observe the timing of the victim or itself

— The attacker can combine timing observation with some other knowledge
» The attacker knows some source code of the victim
» The attacker can force victim to execute a specific function

E.g. Flush + Reload Attack

Access
Set-associative cache Evyjcted Time

H

1

k1

——]

Ly

“— ways —

E.g. Prime + Probe Attack Yale

1- Attacker
primes each
cache set

2- Victim
accesses
critical data

3- Attacker
probes each
cache set
(measure time)

E.g. Flush + Reload Attack Yale

Set-associative cache Evicted Time

|

sets

|

“— ways —

1- Flush each

Access line in the cache

2- Victim
accesses critical
data

3- Attacker
reloads critical
data by running
specific process
(measure time)

Spectre & Meltdown Attack

4

» speculative executions

— Variant 1: Bounds Check
— Variant 2: Branch Target Injection
— Variant 3: Rogue Data Cache
» Variant 3a: Rogue System Register
— Variant 4: Speculative Store

» timing side-channel in the cache

Spectre & Meltdown Attack

o

» Uses speculative executions

» Leverages timing side-channel in
the cache

Contribution Yale

Develop Analyze Use
Cache Access Timing Computation
Model Vulnerabilities Tree Logic (CTL)
Three-step Exhaustive Model execution
single-cache- search for paths of the
block-access possible attacks processor cache
model based on three- focusing on side-

construction step model channel attacks

Three-Step Single-Cache-Block-Access Model Yale

We use three steps to model all possible cache

side channel attacks:

The initial state of or attacker
the cache block

Vi/A1, Var VR/AR, *

Actions of victim Interference &

Step0 w Ste{al w Step2”
/ / N~

Vl/All Vx, VR/AR Vl/All Vxl VR/AR

condition | description
Vi/Aq A specific known memory location.
Vs A piece of memory containing data from a range of
victim’s memory addresses is accessed.
Vr/AR single-cache-block access to “remove” the cache
block contents
* Attacker has no knowledge about memory location

final observation

Vulnerability Examples

* Prime + Probe Attack

Access

Set-associative cache Eyicted Time
A | | |_>| |
| | |
——>
sets >l |
] ——>
ek
>l

—ways 3- Attacker
1- Attacker 2-Victim probes each

Primes each accesses cache set
cache set critical data (measure time)

- EF(E(E(A, UV)UAY))

Vulnerability Examples
* Flush + Reload Attack

1- Flush each
Access line in the cache

Set-associative cache Evicted Time
A ——s; 2~ Victim

Bl accesses critical
ol data
>l 1
sets —La
P> |
| | —— 3. Attacker

Reloads critical
data by running
specific process
(measure time)

“— ways —

- Ap > Vy w Ay
- Vg o Vy » A4

condition | description

Vi/A4 A specific known memory location.

Vs A piece of memory containing data from a range of victim’s
memory addresses is accessed.

Vr/Ag single-cache-block access to “remove” the cache block contents

Soundness of Three-Step Model Yale

Why three-step model can cover all?
* One cache access

— Interference does not exist
« Two cache accesses

— Same as three-step model with Step0 to be “ x”
* More than three cache accesses

- {--- wxws ...} can be divided into two parts

— e A o Ap wo -}, Lo w Ap o Vg ws o} foee o
Ay ws V wo oo P L 1w 1w -} can be reduced
to {-or w Ap ws oo} feee W Vi oo oo} Lo s Vo
o b e Vw3 respectively

= {w (Ap/Vr [Ay [V1) wo Vi o (AR/VR [Ay [V1) > -
maps to effective vulnerabilities represented by three-
step model

}

Soundness of Three-step Model (b) Yale

 More than three cache accesses

— {--- mxw» ... } can be divided into two parts

- { WD AR WD AR WD }’ { WD AR WD VR WD }, ,{ WD
Ay wo Vw3 feee e Vows 1w -.- 3 can be reduced
fo { W AR WD }, { WS VR WS }, ,{ WD Vl WS
o b, {oee e U we - 1 respectively

— {-w (Ag/Vr [A1/ V1) o Ve > (AR/VR [/ Ay [V1) w» -}
maps to known vulnerabilities represented by three-step
model

Exhaustive Vulnerability Search

» Explicit enumeration of all the possible three
steps (6x5x5=150)

» |ldentify 28 types of cache attacks
— 20 types already known or categorized
— 8 types previously not in literature

» Can be applied to evaluate any cache
architecture with CTL logic

Vulnerability Exhaustive List

SO0 | S1 | S2 Recognized Categor || SO | S1 | S2 | Recognized name Catego

name ization rization
Vy | Ap | Vx Type A || v, |V, |4z Flush+Flush Type O
Vi | VR | Vx TypeB || 4, | V. | Vi Flush+Flush Type P
Ap | Ay |V, TypeC || v, |V, | Vs Flush+Flush Type Q
Ve | A1 | Vs TypeD || v | v, | Vg Flush+Flush Type R
Ay | Ag |V, Type E || 4, |V, | 4, | Flush(Evict)+Reload | Type S
Vi |41 | Vx TypeF || v, |V, |A; | Flush(Evict)+Reload | Type T
Ve | A1 |V, Evict+Time Type G || 4A; |V, | A, Prime+Probe Type U
A | V1 | Vs Cache Collision Type H Vi |V, | A4 Type V
Ve | V1 | Vg Cache Collision Type | Ve | Vi |4 Flush(Evict)+Reload | Type W
A |V | Cache Collision Type J A |V, | 1h Cache Collision Type X
Vi | Vi | Vg Cache Collision Type K Ve | Ve | V4 Cache Collision Type Y
V. | Vi |V, | Bernstein’s attack | Type L Ay |V, | V1 Type Z
Ap | Vi |Ar Flush+Flush Type M V|V | 1 Bernstein’s attack Type AA
Ve | Vi |Ag Flush+Flush Type N Ve | Ve | V4 Cache Collision Type AB

Vulnerability Examples

* Flush + Reload Attack * New Type V Attack
(Type S, T Attack)
- Ap > Vy w A, - Vi w V, w A
- Vg w Uy w Ay
Access
Set-associative cache Evicted Time o Access
i Set-ﬂassomatlve cache Evicted Time
[: : | | gl
sets = ",
| sets i |
J ——>1 | I
T ways 3- Attacker - . |
1-Flush 2-Victim reloads critical 1-Vi ctir;/lv Ay o Victi . At\)ttackerh
each line in accesses data by running Soledoey

primes each accesses cache set

the cache critical data specific process L :
cache set critical data '(measure time)

(measure time)

Computation Tree Logic Yale

Treats time as discrete and branching

Can explore different execution paths

 Atomic propositions: @ .@ .-
- Boolean operators: =, VY, A, ...
* Temporal modalities:

- Xy @—P—0—0— — ... ‘nexty’

- Uy O—O—D—O—O— ... “punily’
-Fo O—@—0—0@— > ... ‘“eventually ¢”
-G 0—0—0—0—0— - sy

« Path quantifiers:

- E 3 /‘; A
Y

Y

@

é

Y

O

Y Y

Three-Step Model in CTL logic

For a single cache block, model execution paths that represent

vulnerabilities to attacks:

Actions of victim
The initial state of or attacker

the cache block
~ /

Interference &
final observation

~
(M,s)=EF(E(E (Step0 U Step1) U Step2))

/

Eventually there exists a
path that corresponds to
the vulnerability:

Step0 w» Stepl w» Step?2 X

@
Eg AR w> I/x w> Al
o EF(E(E (ARUV,) UAY))

Bounded Computation Tree Yale

three-step model:

éprobe}
#ﬁt} ‘{miss}

l R
,a ,/{gwe}

{return
data}

Future Work

hardware design of secure caches
cache state machine modeling
checking of vulnerability in CTL logic
improve CTL modeling

Develop Analyze Use
Cache Access Timing Computation
Model Vulnerabilities Tree Logic (CTL)
Three-step Exhaustive Model execution
single-cache- search for paths of the
block-access possible attacks processor cache
model based on three- focusing on side-
construction step model channel attacks

- cache state machine modeling
 checking of vulnerability in CTL logic
» improve CTL modeling

Thank you.’

back up slides

Soundness of Three-step Model (a) Yale

* One cache access
— Interference does not exist

* TwoO cache accesses

— Same as three-step model with Step0 to be “ x”
— None of them can form an attack

 Three cache accesses

— Exhaustive vulnerability Search and effective
vulnerabilities derived

Soundness of Three-step Model (b) Yale

* More than three cache accesses

— {.-- w»xws ...} can be divided into two parts

- {... WD AR WD AR WD ...},{... WD AR WD VR WD ...},{... .M,9A1 WD
Viws b {oeew Vo Vow ...} can be reduced to
Vi = -+ 3, ..., respectively

= {- o (Ag/Vg [/ A1/ V1) o Ve > (AR/VR [/ Ay [V1) w» -}
maps to effective vulnerabilities represented by three-
step model

