
Rapid Detection of
RowHammer Attacks using
Dynamic Skewed Hash Tree

SARU VIG SARANI BHAT TACHARYA

SIEW-KEI LAM DEBDEEP MUKHOPADHYA

N A N YA N G T E C H N O LO G I C A L U N I V E R S I T Y, S I N G A P O R E I N D I A N I N S T I T U T E O F T E C H N O LO GY, K H A R A G P U R

Overview
Introduction

Motivation

Proposed Work

Results

Conclusion

Q&A

Introduction

What is the RowHammer Attack ?
◦ DRAM is hierarchically composed of Channels, Rank and Banks.

◦ Each bank is a collection of cells having typically 214 to 217 rows

◦ Attackers can repeatedly open (i.e. activate) & close (i.e. precharge) DRAM rows in the same memory
bank to induce bit flips in the adjacent rows.

Introduction
What is the RowHammer Attack ?

◦ In particular, the repeated charging and discharging of row cells in a short span of time causes electronic
disturbance which could result in bit-flips in the DRAM cells of the adjoining rows.

◦ The row which is being repeatedly accessed is denoted as the aggressor row.

◦ The two adjoining vulnerable rows, where the flips occur are called the vulnerable rows.

Motivation
Existing Strategies

◦ Hardware resources to maintain the state of DRAM rows

◦ Selective refreshing
◦ High power and performance overhead

◦ Increased Latency of memory operations

Memory Integrity Trees
Most memory protection schemes consists of
some form of encryption and an Integrity
Tree

What are Integrity Trees ?
◦ Equal sized blocks which form the leaf nodes

◦ Recursively apply an authentication function to
generate tree

◦ Root hash has to match with the value stored
on chip

◦ Verification is performed on each level while
accessing the data stored in leaf nodes

What is a Dynamic Integrity Tree ?
◦ Tree that can re-structure itself during run-time

(add and delete nodes).
General form of a 2-ary binary tree

Proposed Work
Main Contribution

◦ A sliding window mechanism is introduced to identify vulnerable rows

◦ Dynamic integrity tree structure is proposed to enable newly detected vulnerable rows to be
dynamically inserted into the tree, while rows that are no longer a concern are removed

Mechanism
◦ RowHammering on processors with DDR3 DRAM was performed. Memory access logs were

studied to show that the combination of the sliding window mechanism and dynamic tree
structure effectively detects bit flips. Also, it constrains the height of the tree, which enables low-
overhead and rapid detection of bit-flips

Framework

Framework
When is a row vulnerable ?

◦ At least X DRAM accesses made to the neighbouring rows from the same bank within window frame of
size p

◦ p stands for the number of DRAM accesses that the window is going to be monitoring at any given time

Window Frame Size
◦ Depends on time taken for one DRAM access after performing clflush instruction

◦ For hammering to be successful, a minimum number of DRAM accesses of the same bank must be
made within a small activation interval before (~ 500ns) the DRAM refreshes (~64 ms)

Tree Representation
• A SUB_TREE consists of two leaf

nodes and their parent. At any one
time, we add/remove a single
subtree rather than a single node
(i.e. two adjoining neighbours of the
aggressor rows, which form the leaf
nodes of the SUB_TREE)

• Tree node structure has additional
fields of parent and sibling node
number.

Tree Representation
ReadNCheck

◦ A recursive procedure to re-calculate the hash at all the levels of the tree and match them with the one
already stored in the tree

◦ The verification will be performed at two instances:
◦ If any node of the tree is accessed

◦ Whenever a node is removed

Hash Function
◦ We use SHA3-256 (Keccak[512] (M || 01, 256)) as the hash algorithm. The output of this function is 256

bits for any given input

Implementation Example
X=2 and p=10

Results

• Examined three different memory logs to identify the patterns exhibiting bank locality
• Varying X and p
• High number of vulnerable and selectively refreshing them without confirming presence of an error

will cause a high overhead

Results

• The experiments revealed that at any given time, the average number of aggressor rows in a single
frame is 4 at any given time, with the maximum being 8

• Limits the height of the tree from 3-4 levels

Memory and Time Overhead
For a tree with n leaf nodes the overhead is calculated to be in bits as

◦ MDT = (256 + 2 ∗ log2 n) ∗ (2 ∗ n − 1)

◦ n varies from 4 to 8

Total time taken to create a SUB_TREE in all the four cases is ≤ 2ms

Adding/Removing nodes from the tree have a overhead between 2-6 ms depending on which
level of tree the update occurs

Additional latency of accessing the memory rows after tree traversal and verification caused by
ReadNCheck function pertains only to the victim rows that are accessed while they are a part of
the tree. The aggressor rows and other row access are still being read with the same frequency
as under normal conditions.

Conclusion
Proposed a framework for rapid detection of multiple bit flips due to RowHammer using
dynamic integrity tree, where nodes can be added/removed based on a vulnerability criterion

A sliding window that effectively limits the height of the tree for maintaining vulnerable rows

The criterion and size of the sliding window can be fixed to attain maximum security

Experimental results confirm that the proposed framework will enable rapid detection of bit
flips due to RowHammer attack

Future Work:
◦ More experimental results: Miss Rate, Power, Area etc.

◦ More quantitative comparison with other existing techniques

Thanks &

Questions

