Cross-Core Prime+Probe Attacks on Non-inclusive Caches

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy Campbell, Josep Torrellas

University of Illinois at Urbana-Champaign

Modern Cache Hierarchies

- Modern systems are moving to non-inclusive cache hierarchies
 - Latest Intel server processor uses non-inclusive caches

	Skylake-S (Sep. 2015)	Skylake-X/Skylake-SP	Core
	(569 2013)	(5411 2017)	Coro
L2	256KB/core	1MB/core	Core
	16-way, inclusive	16-way, inclusive	Core
	2MB/core	1 375MB/core	
LLC	16-way, inclusive	11-way, non-inclusive	Core

Core 0	LLC Slice 0	LLC Slice 4	Core 4
Core 1	LLC Slice 1	LLC Slice 5	Core 5
Core 2	LLC Slice 2	LLC Slice 6	Core 6
Core 3	LLC Slice 3	LLC Slice 7	Core 7

• Existing conflict-based attacks do not work on sliced non-inclusive caches

Challenges of Prime+Probe Attacks

• Lack of Visibility into the Victim's Private Cache

Challenges of Prime+Probe Attacks

Contributions

- 1) We develop an algorithm to create Eviction Set on sliced non-inclusive caches.
- 2) We reverse engineer the directory structure in Intel Skylake-X processors.

Previous attacks on inclusive caches are an example of directory attack.

- 3) We identify that directory as a **unified** structure to bootstrap conflict-based cache attacks for different cache hierarchies.
- 4) Based on our insights into the directory, we design the first Prime+Probe attack on sliced non-inclusive LLCs.

The Inclusive Directory Structure

• Insight: Directory must be inclusive to maintain tracking information for all the cache lines resident in the cache hierarchies.

Creating Inclusion Victims via ED Conflicts

Prime+Probe Attacks Targeting the Directory

- **Prime**: access W_{ED} probe lines to occupy the target set in a ED slice
- Wait: wait for the victim to perform an access
- Probe: re-access the W_{ED} probe lines and measure access latency

victim does not perform access → Probe latency is short

Prime+Probe Attacks Targeting the Directory

- **Prime**: access W_{ED} probe lines to occupy the target set in a ED slice
- Wait: wait for the victim to perform an access
- Probe: re-access the W_{ED} probe lines and measure access latency

Victim performs access \rightarrow Probe latency is higher

Conclusion

- Directory = The unified structure for conflict-based cache attacks
- "Attack Directories, Not Caches: Side-Channel Attacks in a Non-Inclusive World" recently accepted in IEEE Symposium on Security and Privacy (SP'19).

More in the Paper

- Eviction set construction algorithm.
- Steps of reverse engineering the directory structure.
- Root cause analysis of the the vulnerability
- A multi-threaded high-bandwidth Evict+Reload attack.
- Attack results on AMD machines.

