m_ﬁ{lo This project The NATO Science for Peace

NV o1AN is supported by: | and Security Programme

TPU as Cryptographic
Accelerator

Rabimba Karanjai, Sangwon Shin, Wujie Xiong, Xinxin Fan, Lin Chen, Tianwei Zhang
Taeweon Suh, Weidong Shi, Veronika Kuchta, Francesco Sica, Lei Xu

L

Presented By: Rabimba Karanjai

PU Al accelerators

TPU v5e

2023

Liquid cooled Optically Purpose-built Our powerful, Desigr:gd f?r
1k chips distributed reconfigurable cost-efficiency and scalable, and exceptional
sharez memory 3D Torus performance for flexible Al performance and
N medium/large-scale accelerator efficiency. Enabling
4k chips with training and the next frontier of
distributed shared inference Al models
memory

3217 381
P Pn. =

!!'lxll'@?
+] T

e
0 q

o
e

Ja!

ol
i
S|

2

1234serend131114148848°. 280588812323

o
STREEREEEEA

R263 3 =
03 R264 & U0 O

-
€00 912 o =
r2ss _R237

Introduction

Compute Encrypted Data
With Homomorphic Encryption

RO

dEWDdk43JH A3fhMXfTe8
- ST
8.775 77

Outsource the computation of a function f(x) on data x to a server,
without revealing the data to the server.
Source: Chainlink

Introduction

Homomorphic Encryption Enables
Al Computation on Encrypted Data

Private Data

This input is plain text.

) a ENCRYPT WITH PRIVATE KEY
4

-

kh34r8o3hrohrfr

bwf23idoklgd8f +

L.
) a DECRYPT WITH PRIVATE KEY

v

This decrypted output is also plain text!

Al Computation by Third Part

SEND TO Al MODEL * kh34r8o3hrohrfr

Al-POWERED
COMPUTATION

RETURN QUTPUT TO USER hwf23]’_40klg48f N

0 Chainlink

everyone in the group submits their
votes but it's confidential! no one else
in the group should know others’
votes or information. everyone just
wants to know the voting results.

an analogy for FHE

©

processing votes with
information of who
voted to produce
voting results.

everyone, including pip and
bob, receive the results of the
votes together without ever
knowing who voted for which
option.

pip

2, path A

pip waits for bob. pip doesn’t know

the password for the lock, nor does

he know which path bob will take, but

as long as bob appears again and path B
again, he knows for sure bob knows

bob wants to meet pip. bob
knows the password to the
lock but he can'’t share it

the password.

an analogy for ZK proof

with pip. regardless of path
taken, bob always shows
up, proving bob knows the
password.

Motivation
For The
Work

Fully Homomorphic Encryption (FHE)
and Zero-Knowledge Proofs (ZKPs) are
computationally expensive.

Polynomial multiplication is a major
bottleneck in these schemes.

TPUs/NPUs offer a potential solution for
acceleration.

Polynomial Multiplication in Cryptography

Why polynomials are
importantin

cryptography:

Polynomial
operations:

Multiplication: More Two common ways:

Related to hard Effective way for

. . Addition: complex, Coefficient
problems used in computation . .
cryptography representation Straightforward. performance representation and
’ ’ bottleneck. value representation.

TPU Architecture and Suitability for
Cryptography

* TPU overview:

* Designed for Al workloads, especially matrix
operations.

* Systolic array architecture for high parallelism.
. TensorCore TensorCore
* Low power consumption compared to CPUs and
Scalar Vector Scalar Vector
GPUS. High Unit Unit Unit Unit High
Bandwidth — . .]] — Bandwidth

L4 Su ita bi lity for C ryptogra phy: MEITIOFY MUIT;‘ET:.::FHUH MulrlI‘iET:::Fticn MulﬁET:E;tiun MIJEET:.SEUUH MEFI"IOF:.‘

* Potential for accelerating polynomial multiplication

through matrix operations.

* Challenges: Large coefficients and high
polynomial degrees

Image Source: Jouppi, Norman P., et al. "A domain-specific supercomputer for training
deep neural networks." Communications of the ACM 63.7 (2020): 67-78.

Converting Polynomial Multiplication to
Matrix Operations

A polynomial f(z) € Zy[z]/(2™ + 1) is in the form

* Incorporating modulo operation £2) = ap® + @y + -+ 4y gz,)
Into multiplication. b b b,
» Converting to vector-matrix (a0sar, .. yap_y) x | o7t oo b2l (1)
multiplication. b by - by |
° EXtending to matriX'matriX Considering two degree-2 polynomials defined over R, = Zq[ﬂ/(%3 —l—.l),
multiplication for multiple e o b comvertod 20 8 vortesmatas mivolication opcestion |
multiplications by by b]
—bp1 by o by
(ao,al,...,an_l)x “.1 O .“2 . (1)
b by o by

We can convert the multiplication into matrix multiplication format with
moduli polynomial 2" + 1

Chaue nges and * Challenge: TPUs are designed for smaller data types

(e.g., bfloat16).

SOlUtlonS - La rge * Solution: Residue Number System (RNS)

* Divide coefficients into smaller parts for parallel

Coefficients computation.

* Independentinstances can be executed on TPU
without modification

Table 1: Common polynomial parameters for cryptographic schemes.

Scheme Polynomial degree Polynomial coefficients size
FHE (FV, BFV, CKKS) 210 g 214 32 to 54 bits

PQC 28 tg 210 < 60 bits

ZKP (zkSNARK, zkSTARK) 220tp 22! 284 to 768 bits

Handling High Polynomial Degrees

e Calculate the product of sub-vectors and sub-

matrices: R :
"""-"“-""' . Vi M, ' v My !
ra e Vix My g Vix Mg gisES oS 4 4
TQC{—I'EXMC T‘ED{—I"%XMD s N \ = K
) ¥y Me T V2 My |
All results are vectors of dimension n/2.
The ongmal operands The decomposed operands
* Calculate the first half of the finalresultr, = r, + r,¢,
which is a vector of dimension n/2. Figure 1: Demonstration of handling of polynomials with
high degree. On the left side of the figure, we evenly
* Calculate the second half of the final break the vector into two sub-vectors and the matrix

resultr, = ryg * ryp, which is a vector of dimension n/2. into four sub-matrices. The original vector-matrix

. o multiplication is decomposed into four vector-matrix
* Concatenate r, and r, to form the final result, which is multiplications with smaller dimensions on the right

a vector of dimension n. side.

End to End workflow

TPU Utilization: Leverage the matrix
multiplication capabilities of TPUs to accelerate
polynomial multiplication in cryptographic
schemes.

Algorithm Overview:

Step 1. Determine optimal parameters for
decomposing polynomials based on the
specific cryptographic scheme and TPU
hardware constraints.

*Step 2: Convert polynomials to matrices and
perform efficient matrix multiplication on the
TPU.

*Step 3: Reconstruct the final polynomial
product from the TPU's matrix multiplication
results.

ax b x para

GENCONFIG

l

config

— —

- e
EXTRACT MODULI EXTRACT DIMENSIONS
modList dimList
| .l ~ B T -
Y, __,/-/ - ™~
- = -
i |
CONVERTPOLY
- T —
e .
4
i
A B
I]
S

Y -

TPUMUL TPU

CONVERTMATRIX

Future Work -
Karatsuba
Multiplication

eKaratsuba Algorithm: Reduces expensive
multiplications by increasing
additions/subtractions.

*TPU Adaptation: Decompose polynomials
into smaller ones for TPU processing,
leveraging its matrix multiplication strength.

eChallenge: TPUs are not optimized for
efficient polynomial addition/subtraction,
potentially requiring extra hardware and
introducing overhead.

% o [|
fi

Lt \hz(X) TR F\ \

(f() + 106) n10x) 1x) 9%)

* (g1(x) + gO(x)
g g 90(x))

91(x)
/ ~N = hOX) = f0(x) * g0(x)

9(x) +
9(x)
90(x) L

4

Karatsuba multiplication. The idea of Karatsuba multiplication [17] is trading one expensive multiplication
with multiple cheap addition/subtraction operations. For two polynomials f{x) and g(x) with degree n, we can
rewrite them as flx) = fi(x)x™ + fo(x) and g(x) = g,(x)x™ + go(x), where f, g, are polynomials of degree n — m, and

fo. go are polynomials of degree m — 1. The product is then

f(@)g(z) = (fu(z)z™ + fo(z))(g1(z)z™ + go(z))
= hy(z)2®™ + hy(z)z™ + ho(z),

where ho(x) = f1(x)g1(x), hi(x) = (fi(x) + f6(x))(g1(x) + go(x)) — ha(x) — ho(x), ho(x) = folx)go(x).

Experimental Results and Evaluation

Matrix multiplication; m=8 Matrix multiplication: m=16 Matrix rmultiplicatian: m=128
0.003s
30035
? L 00035
0.0030
L0030 20030
00025 00025

o254

00020 4 / E‘ foozo £ moo2o
00015 - / 00015 1 /_, 00015
0.0010 | ooln /’/ 0.0010 -

- 0.0005 ,.// 0005 /

Time

Time

[+ 2000 000 G000 ES000 10000 12000 14000 18000 o 2000 000 BOO0 EBS00 10000 12000 4000 8000 [] 2000 4000 G000 BOOO0 ROOOO 12000 14000 16000

(a) TPU v2 with m = 8,16, 128
Matrix multiplicatian: m=38 Matrix multiplication: m=16 Matrix multiplication; m=1328

[ERILHETE

/ o
G025 1 L0025
0025

0.0020 4 0.0020 - //

0020 4
ooals BO015

0.0010 4 / 001 00010
0005 / 2.0005 1 DO005

— =

Time
Time

L]
E o015

o 2000 2000 BOOG BODO JOOO0 2000 1&000 16000 (=] 2000 S0040 BOOD OO0 10000 10000 4000 18000 =] 2064 3000 000 s0dd 10500 1:000 14000 16000

(b) TPU v3 with m = 8, 16, 128 "

Summary of experiment results using Google TPU with different configurations.

Conclusion

* TPUs show promise for accelerating
polynomial multiplication in cryptography.

* RNS and divide-and-conquer address
challenges of large coefficients and high
degrees.

 Future work will focus on further

optimizations and end-to-end scheme
design.

	Slide 1: TPU as Cryptographic Accelerator
	Slide 2
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: FHE
	Slide 6: ZKP
	Slide 7: Motivation For The Work
	Slide 8: Polynomial Multiplication in Cryptography
	Slide 9: TPU Architecture and Suitability for Cryptography
	Slide 10: Converting Polynomial Multiplication to Matrix Operations
	Slide 11: Challenges and Solutions - Large Coefficients
	Slide 12: Handling High Polynomial Degrees
	Slide 13: End to End workflow
	Slide 14: Future Work - Karatsuba Multiplication
	Slide 15: Experimental Results and Evaluation
	Slide 16: Conclusion
	Slide 17: Questions
	Slide 18: Thank you!

